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Abstract

Background: The type | interferon (IFN) signature in rheumatoid arthritis (RA) has shown clinical relevance in
relation to disease onset and therapeutic response. Identification of the cell type(s) contributing to this IFN
signature could provide insight into the signature’s functional consequences. The aim of this study was to
investigate the contribution of peripheral leukocyte subsets to the IFN signature in early arthritis.

Methods: Blood was collected from 26 patients with early arthritis and lysed directly or separated into peripheral
blood mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs). PBMCs were sorted into CD4" T
cells, CD8™ T cells, CD19" B cells, and CD14" monocytes by flow cytometry. Messenger RNA expression of three
interferon response genes (IRGs RSAD?2, IFI44L, and MXT) and type | interferon receptors (IFNART and IFNAR2) was
determined in whole blood and blood cell subsets by quantitative polymerase chain reaction. IRG expression was
averaged to calculate an IFN score for each sample.

Results: Patients were designated “IFN"9" (n = 8) or “IFN'"" (1 =18) on the basis of an IFN score cutoff in whole
peripheral blood from healthy control subjects. The difference in IFN score between IFN"9" and IFN'®" patients was
remarkably large for the PMN fraction (mean 25-fold) compared with the other subsets (mean 6- to 9-fold),
indicating that PMNs are the main inducers of IRGs. Moreover, the relative contribution of the PMN fraction to the
whole-blood IFN score was threefold higher than expected from its abundance in blood (p = 0.008), whereas it was
three- to sixfold lower for the other subsets (p < 0.063), implying that the PMNs are most sensitive to IFN signaling.
Concordantly, IFNART and IFNAR2 were upregulated compared with healthy controls selectively in patient PMNs

(p <0.0077) but not in PBMCs.

Conclusions: PMNs are the main contributors to the whole-blood type | IFN signature in patients with early arthritis,
which seems due to increased sensitivity of these cells to type | IFN signaling. Considering the well-established role of
neutrophils in the pathology of arthritis, this suggests a role of type | IFN activity in the disease as well.
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Background

Rheumatoid arthritis (RA) manifests as a heterogeneous
disease with a clinical spectrum ranging from mild to se-
vere disease. This heterogeneity most likely has its origin
in the multifactorial nature of the disease, whereby spe-
cific combinations of genetic risk factors, together with
an appropriate environmental trigger, influence not only
susceptibility but also the severity, pathogenesis, and
therapeutic outcome.

Heterogeneity of RA is partly reflected at the level of
gene expression. Genome-wide gene expression analysis
revealed evidence for molecular differences between pa-
tients with RA, in particular in the type I interferon
(IFN) response gene program [1]. Some of the patients
with RA display a so-called IFN signature, which is char-
acterized by relatively high expression of type I IFN re-
sponse genes (IRGs). Induction of these IRGs is triggered
via activation of the type I interferon a/p receptors
IFNARI and IFNAR2, which dimerize and subsequently
activate the Janus kinase-signal transducer and activator
of transcription (JAK-STAT) signaling pathway, more spe-
cifically JAK1, TYK2, STAT1, and STAT2, eventually
resulting in recruitment of IRF9 and formation of the
ISGF3 transcription factor complex [2]. Although the
presence of the IEN signature in RA is not found to be as-
sociated with disease parameters such as disease activity
or presence of rheumatoid factor and/or anticitrullinated
protein antibodies (ACPA) [3], several studies have dem-
onstrated that the IFN signature in RA does have potential
clinical relevance.

The presence of the IFN signature was shown to be a
risk factor for arthritis development in preclinical disease
[4, 5]. In later phases of the disease, the presence of an IFN
signature was found to be associated with clinical response
to different treatment regimens, such as rituximab [6—8]
and tocilizumab [9]. Furthermore, type I IRG expression
appears to be differentially regulated between responders
and nonresponders during treatment with rituximab and
anti-tumor necrosis factor (anti-TNF) therapy [10-12].

Peripheral blood is an easily accessible source for bio-
marker identification, and the studies mentioned above
demonstrate that the peripheral blood of patients with
RA reflects pathogenic processes related to the disease.
However, the peripheral blood consists of several cell
types, and consequently the transcriptomic profile is an
accumulation of all gene expression programs that are
induced in these cell types. Identification of the cell
type(s) contributing to the IFN signature could provide
insight into the signature’s functional consequences and
potentially into personalized treatment strategies.

The aim of the present study was to investigate the
contribution of the major leukocyte subsets to the IFN
signature in whole blood from patients with early arth-
ritis. Using this patient group allowed us to study the
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IEN signature without interference of treatment with
immune-modulatory drugs that are known to affect type
I IFN signaling, such as glucocorticoids or hydroxychlor-
oquine [13-15].

Methods

Patient recruitment and blood collection

Patients (1 =26) were consecutively recruited from the
early arthritis cohort within the Amsterdam Rheumatol-
ogy and Immunology Center, Reade, Amsterdam, The
Netherlands. Inclusion criteria were presence of at least
one arthritic joint, disease duration <6 months, and no
previous use of disease-modifying antirheumatic drugs
or biologics. The majority of patients (81 %) fulfilled the
2010 American College of Rheumatology criteria for the
classification of RA [16]. The remaining five patients
were diagnosed with seronegative RA (n =4) and mono-
arthritis (n = 1), according to the rheumatologist’s assess-
ment. Healthy control subjects (n = 25) were recruited at
the VU University Medical Center, Amsterdam. From
each donor, approximately 20 ml of blood was collected
by venipuncture into heparin tubes and a PAXgene tube
(PreAnalytiX, Hombrechtikon, Switzerland). The PAX-
gene tube was stored at —20 °C until further processing.
The heparinized blood was processed on the same day it
was drawn. This study was approved by the medical
ethics committee of VU University Medical Center and
Reade, Amsterdam, The Netherlands, and informed con-
sent was obtained from all donors.

Peripheral blood mononuclear cell isolation and
polymorphonuclear granulocyte isolation

Peripheral blood mononuclear cells (PBMCs) were iso-
lated from heparinized blood by density gradient centri-
fugation using Lymphoprep (Axis-Shield, Oslo, Norway),
according to the manufacturer’s protocol. PBMCs were
washed, and a minimum of 1 x 10° PBMCs was directly
lysed in 350 pl of Buffer RLT (QIAGEN Benelux BV,
Venlo, The Netherlands). A minimum of 7 x 10° PBMCs
was resuspended in PBS containing 1 % bovine serum
albumin for subsequent flow cytometric cell sorting.
Polymorphonuclear leukocytes (granulocytes; PMNs)
were isolated from the remaining erythrocyte/PMN pel-
let by lysing the erythrocytes with Buffer EL (QIAGEN
Benelux BV) as described previously [17, 18], according
to the manufacturer’s protocol. The remaining PMN-
enriched pellet was washed with PBS and lysed in 350 pl
of Buffer RLT. Buffer RLT lysates were stored at —-20 °C
until RNA isolation.

Flow cytometry and cell sorting

Absolute numbers and percentages of monocytes and
lymphocyte subsets were determined using flow cytometry
(BD FACSCalibur; BD Biosciences, San Jose, CA, USA)
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with whole heparinized blood. Quantification beads (BD
Trucount; BD Biosciences) in combination with fluorescein
isothiocyanate (FITC)-conjugated anti-CD45, phycoerythrin
(PE)-conjugated anti-CD14, peridinin chlorophyll (PerCP)-
conjugated anti-CD3, and allophycocyanin (APC)-conju-
gated anti-CD19 were used to measure absolute numbers
of lymphocytes, monocytes, T cells, and B cells, according
to the manufacturer’s instructions (all from BD Biosci-
ences). For the T-cell subsets, anti-CD45 and anti-CD3
were taken in combination with PE-conjugated anti-CD8
and APC-conjugated anti-CD4 (all from BD Biosciences).

The following antibodies were used for the cell-sorting
procedure (all from BD Biosciences): Pacific Blue-conjugated
or Horizon™ V450-conjugated anti-CD3, PE-conjugated
anti-CD4, FITC-conjugated anti-CD8, APC-conjugated anti-
CD19, and PerCP-conjugated anti-CD14. Labeled cells were
analyzed and separated using FACSAria and FACSDIVA
software 6.1.3 (BD Biosciences). The nozzle size was 70 pum,
and the sorting speed was 3000—5000 cells/second. For sort-
ing purposes, a gate was set around lymphocytes, and subse-
quent gates were set for CD3"CD4" T helper cells, CD3
"CD8" cytotoxic T cells, and CD19" B cells, based on
positivity of the markers. Monocytes were gated on
the basis of forward and side scatter properties as
well as CD14 positivity. From each population, a
minimum of 3 x 10° cells was sorted and subsequently
spun down at 400 x g for 5 minutes, lysed in 350 pl
of Buffer RLT, and stored at —20 °C until RNA isola-
tion. Sorting purity was >90 % for 95 of 104 sorted
samples. Three sorted samples, two CD19-enriched
fractions, and one CD14-enriched fraction were excluded
due to purities <80 %.

RNA isolation and complementary DNA synthesis

RNA was isolated from the cell lysates and PAXgene
tubes using the RNeasy Micro or Mini kit (QIAGEN
Benelux BV) or the PAXgene RNA isolation kit (PreAn-
alytiX), respectively, according to the manufacturers’
protocols. In both procedures, a DNase (QIAGEN Bene-
lux BV) step was included to remove any genomic DNA.
RNA quantity and purity were determined using a
NanoDrop spectrophotometer (Nanodrop Technologies,
Wilmington, DE, USA). Either 50 ng (cell fractions) or
250 ng (PAXgene whole blood) of RNA was used for
complementary DNA (cDNA) synthesis, which was per-
formed using the RevertAid H Minus ¢cDNA Synthesis
Kit (Thermo Scientific, Waltham, MA, USA), according
to the manufacturer’s protocol. Two CD19-enriched
samples were excluded because of low RNA yield.

Quantitative polymerase chain reaction and calculation of
the IFN score

We determined the messenger RNA (mRNA) expression
of three IFN response genes (IRGs [FI44L, MXI1, and
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RSAD?2) that were previously described to be compo-
nents of the IFN signature in RA [1, 7, 10], and thus be-
lieved to reflect the type I IFN response in peripheral
blood. IRG mRNA expression was measured on cDNA
by quantitative polymerase chain reaction (qPCR). qPCR
was performed using SYBR Green (Applied Biosystems,
Foster City, CA, USA) and the ABI Prism 7500 HT
Sequence Detection System (Applied Biosystems), ac-
cording to the manufacturer’s protocols. Primers were
designed using Primer Express software and guidelines
(Applied Biosystems), and they are listed in Additional
file 1: Table S1. To calculate arbitrary values of mRNA
levels and to correct for differences in primer efficien-
cies, a standard curve was constructed. Expression levels
of target genes were calculated relative to housekeeping
gene GAPDH. Expression levels of the IRGs were highly
correlative for all studied cell fractions (r=0.708, p<
0.0001); therefore, an IFEN score was calculated by aver-
aging the expression levels of all three genes for each sam-
ple. The presence of a type I IFN signature (referred to as
IFN"€M) was defined as an IFN score above mean + 2*SD
in healthy control subjects. Each IRG was also analyzed
individually, which yielded results comparable to those de-
scribed below (data not shown).

Statistical analysis and calculation of expected and
observed contributions

All analyses were performed using the Mann-Whitney U
test in Prism 5 software (GraphPad Software, La Jolla,
CA, USA). In order to study the relative contribution of
each cell type to the whole-blood IFN signature, we
calculated an “expected” and “observed” IFN score con-
tribution. The expected contribution was based only on
the distribution of the cell types in the blood and as-
sumed that each cell type would contribute equally to
the whole-blood IFN signature. For example, for a
whole-blood sample with an IFN score of 2.5 that con-
tained 3.3 % monocytes, the expected contribution of the
monocytes would be 2.5 x 0.033 =0.0825. The observed
contribution was the IFN score as it was measured in a
sorted cell subset, corrected for the abundance of this sub-
set in whole blood. For example, if the sample described
above had an IFN score of 3.5 in the CD14-enriched frac-
tion, the observed IFN score contribution of the mono-
cytes would be 3.5 x 0.033 = 0.1155.

Results

Patients’ characteristics and selection of IFN"9" and
IEN'" patients

First, patients were separated into IFN™&" and IFN'
groups on the basis of their IEN scores in whole blood.
As displayed in Fig. 1, the IFN signature was present in
8 of 26 patients, who are referred to as “IFN"&"; the
remaining 18 patients were designated “IFN'Y.” The
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Fig. 1 Whole-blood interferon (IFN) scores in all 26 patients with
early arthritis. Eight patients were designated patients with an
interferon signature (IFN") on the basis of the mean + 2 SD cutoff
in healthy control subjects. Patients within the 95 % limits of healthy
control subjects (indicated between the dashed lines) were
considered IFN'"

patients’ characteristics are shown in Table 1. The IFN-
high oroup displayed a slightly shorter duration of symp-
toms and a higher percentage who were ACPA-positive,
but this did not reach statistical significance (symptom
duration p=0.137, ACPA positivity p =0.084; Fisher’s
exact test).

General abundance of cell subsets in relation to whole-blood
type | IFN profile

In order to gain insight into the cell subset composition
of the peripheral blood in relation to the presence of the
IFN signature, we compared the number of total CD3"
T cells, CD4" T helper cells, CD8" cytotoxic T cells,
CD19" B cells, CD14" monocytes, and granulocytes
(PMNs) between IFN"8" and IFN'®Y patients. As shown
in Table 2, we observed a tendency toward lower num-
bers of all lymphocyte subsets in IFEN"8" patients than in

Table 1 Patient characteristics

Page 4 of 10

IEN'®" patients, but this did not reach statistical signifi-
cance (p = 0.07). Remarkably, only the number of PMNs
was significantly higher in IEN"" patients than in IFN'*"
patients, (1.6-fold, p =0.031). The cell percentages also
displayed a slightly higher PMN percentage and lower
lymphocyte percentage in IEN"8" patients than in IFN'"
patients, although this was not significant (Table 2). The
fold difference we observed in whole-blood IFN scores be-
tween IEN'Y patients and IFN™&" patients (12-fold)
greatly exceeded the fold difference observed in PMN
abundance (1.6-fold), indicating that the presence of the
IEN signature in these patients was not caused primarily
by predominance of a particular cell subset.

Contribution of sorted cell subsets to IFN score

Next, we compared the contribution of individual
leukocyte subsets to the IFN signature. As shown in
Fig. 2, IFN scores were significantly different between
IENME" and IEN'Y patients for all cell subsets, which is
to be expected because all cell types presumably possess
type I IEN signaling ability. The difference between IFN-
high and IFN'" patients was most prominent for the PMN
fraction, which displayed a 25-fold higher mean IFN score
in IFNM8" patients than in IFN'Y patients (p <0.0001)
(Fig. 2). These measurements are normalized to RNA
input, and the expression levels are relative to the house-
keeping gene GAPDH; hence, these data are without
regard to cell abundance.

In order to investigate the relative contribution of the
leukocyte subsets in relation to their distribution in per-
ipheral blood, we used the expression data in whole
blood from IENM" patients and the relative abundance
of each subset to estimate an “expected” cell subset con-
tribution, assuming that each subset would contribute
equally to the IFN score. Subsequently, we compared
the estimated cell subset contributions to the actual con-
tributions as measured in the sorted cell subsets, cor-
rected for the cell subset's abundance (“observed”
contribution). Details about the calculation of the

Healthy control subjects All patients IFNow IFNPigh
Number of patients 25 26 18 8
Female, n (%) 16 (64) 20 (77) 13 (72) 7 (88)
Age, years, mean (SD) 35 (10 47 (14) 48 (16) 44 (9)
DAS28, mean (SD) n/a 46 (1.2) 47 (13) 44 (1.0)
Duration of symptoms in weeks,* mean (SD) n/a 16 (25) 20 (29) 8 (8)
IgM-RF positivity, n (%) n/a 19 (73) 13 (72) 6 (75)
ACPA positivity, n (%) n/a 15 (58) 8 (44) 7 (88)

Abbreviations: IlgM-RF immunoglobulin M rheumatoid factor, ACPA anticitrullinated protein antibodies, DAS28 Disease Activity Score in 28 joints, n/a not applicable,
IFN" patients within the 95 % limits of healthy control subjects, IFN"9" patients with an interferon signature

“Data missing for one patient
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Table 2 Abundance of leukocytes and subsets in patient whole blood

Page 5 of 10

Based on All patients IFNoW IFNPigh Fold difference Comparison of
between means means, p value
Total leukocytes CD45* 7191 £ 2626 7271 £2981 7020+ 1814 1.04 (low > high) 0.798
Lymphocytes CD45", FSC/SSC 1856 + 481 1955 +478 1646 + 442 1.19 (low > high) 0.194
(278 % +9.7) (29.7 % £ 10.6) (240 % +6.1)
T cells CD3* 1349 + 365 1441 £ 363 1153+ 304 1.25 (low > high) 0.066
(202 % +7.2) 218 % +7.38) (169 % £ 4.6)
Helper T cells CD3", CD4*™ 850+ 228 899+ 214 729+ 229 1.23 (low > high) 0.130
(13.1 % +5.0) (13.89%+53) (116 % +4.1)
Cytotoxic T cells CD3*, CD8* 465 +232 514+ 245 345+ 148 1.49 (low > high) 0.187
(6.9 % +34) (76 % +3.7) (529%+19)
B cells cD19* 268 + 125 284 + 140 234+ 81 1.21 (low > high) 0.549
(40%+19) (42 % +2.1) (35%+13)
Monocytes cD14* 336127 353+ 140 299+ 92 1.18 (low > high) 0406
(48 %+ 1.5) (50%+14) (44 %+15)
PMNs FSC/SSC 3757 £ 2715 3137 £ 2945 5075+ 1598 1.61 (low < high) 0.031
(674 % +10.1) (653 %+ 11.0) (716 % +6.7)

Abbreviations: FSC forward scatter SSC, side scatter, IFN® patients within the 95 % limits of healthy control subjects, IFN"9" patients with an interferon signature,

PMN polymorphonuclear granulocyte

Cell amounts are indicated in numbers per microliter, mean + SD. Percentages of total leukocytes are indicated between brackets, mean + SD

expected and observed contributions are described
above in the Methods section.

As shown in Table 3, all cell types showed a difference
between the observed contributions and the expected
contributions to the IFN score. The observed contribu-
tions of CD4" helper T cells, CD8" cytotoxic T cells,
CD19" B cells, and CD14" monocytes were 2.8- to 6.3-
fold less than the expected contributions, which was
significant for most subsets (p < 0.0625). Remarkably, the
observed contribution of the PMNs was 3.4-fold greater
than its expected contribution (p = 0.0078). This tendency

remained present after correction for any differences in
RNA vyield between subsets (data not shown). The sum of
the RNA-corrected observed contributions of all cell sub-
sets per patient was somewhat higher than the total [FN
score as measured in whole blood (mean difference 1.2-
fold, not significantly different). This could be explained
by slight impurities in each isolated subset, and it implies
that there is no other cell population substantially contrib-
uting to the whole-blood IFN score, as this would have
resulted in a lower sum than the whole-blood IFN score.
Altogether, these data indicate that PMNs are the main
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Fig. 2 Interferon (IFN) scores per leukocyte subset of patients within the 95 % limits of healthy control subjects (IFN'") and patients with an
interferon signature (IFN"9"). Fold differences between the two groups, as well as p values of the statistical comparisons, are indicated below the
graph. PMN polymorphonuclear granulocyte
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Table 3 Expected and observed contributions of leukocyte subsets to the interferon score in whole blood of patients with an

interferon signature

Expected Observed Direction Mean fold difference p Value
CD4 1.843+1.715 0.521+0.507 Exp > Obs 394+1.71 0.0156
CD8 0.741 £0.504 0.156£0.127 Exp > Obs 536+290 0.0223
cD19 0530+ 0499 0.298 +0.263 Exp > Obs 2.78+068 0.0625
CcD14 0.679+£0.59%4 0.126£0.110 Exp > Obs 6.25+2.53 0.0156
PMNs 11.71+£1153 4833 +65.89 Exp < Obs 335+£1.29 0.0078

Abbreviations: Exp expected, Obs observed, PMN polymorphonuclear granulocyte

contributors to the whole-blood IFN score, not only due
to its high abundance in whole blood but also because of
an increased potency to induce IRGs.

Relation between IFN score and type | IFN receptor
expression in subsets and whole blood

The data described above suggests an increased sensitivity
of IFN™&" PMNs to type I IFNs. To gain more insight into
the mechanism behind this increased sensitivity, we mea-
sured the mRNA expression of the upstream receptors of
type I IFN signaling (i.e., IFNARI and IFNAR2). Although
we observed a correlation between the subset’s IEN score
and IFNARI expression for all subsets, the correlation be-
tween the subset’s IFN score and IFNAR2 expression was
significant only for the PMN fraction (Spearman’s r=
0461, p=0.020) (Table 4). Furthermore, both IFNARI
and IFNAR?2 expression were highest in the PMN fraction
compared with the other fractions, indicating that PMNs
could be more sensitive to type I IEN binding.

Specific upregulation of type | IFN receptors in early
arthritis PMNs

Since the PMN fraction showed a high activation of the
IFN response that appeared to be related to expression

of the type I IFN receptors, we compared IFNARI and
IFNAR2 mRNA expression in isolated PBMCs and
PMN:s of patients with those of healthy control subjects.
As shown in Fig. 3, we observed no differences in expres-
sion of IFNARI or IFNAR?2 in the PBMC fractions of pa-
tients compared with healthy control PBMCs (p = 0.387
and p =0.902, respectively). However, both IFNARI and
IFNAR?2 expression were considerably increased in the
PMN fraction of patients compared with healthy control
PMNs (IFNAR1 3.0-fold, p < 0.001; IFNAR2 2.5-fold, p =
0.008). Only IFNARI expression was significantly different
between IFN!®Y and IFNM&" patients (p=0.021) (see
Fig. 3a), implying that the extent of the IFN signature
might not depend solely on IFNAR expression.

Discussion

The type I IFN signature in peripheral blood from patients
with RA was first described in 2007 [1]; since then, it has
been studied extensively in relation to disease onset and
therapeutic response. Occasionally, IRG expression in RA
was assessed in isolated cell subsets instead of in whole
blood, such as PBMCs [6, 19], monocytes [20], or neutro-
phils [21]. To our knowledge, the present study is the first
to demonstrate that there is diversity in the contribution

Table 4 Type | interferon receptors IFNART and IFNAR2 mRNA expression and their relationship to subset interferon scores

Average expression

Correlation with subset’s IFN score

All patients IFNM'9 patients Spearman’s r p Value
IFNART
CD4 2473 £1.157 3440+ 1.309 0679 0.0001
CD8 1.723+0.701 1.976 £ 0.730 0363 0.069
CcD19 3687 £1.756 3.844 £ 1487 0.525 0.012
CcD14 0.687 £ 0.294 0.908 + 0.354 0.371 0.068
PMN 5.089+ 2243 6.529 +1.649 0461 0.020
IFNAR2
CD4 4.544 + 3247 3.531+1234 0.179 0.382
b8 3952+2.736 2969 +0.994 —-0.037 0.857
CcD19 4213 +£2389 2.978 £0.908 -0.03 0.895
CD14 0.946 + 0.562 0.748 + 0304 0.042 0.842
PMN 5.749 + 5039 6231 +3.340 0.507 0.010

Abbreviations: IFN interferon, IFNAR interferon a/B receptor, IFN"9" patients with an interferon signature, PMN polymorphonuclear granulocyte
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J

of whole-blood cell subsets to the extent of the type I [FN
response, with a major contribution by PMNs.

Patients with an IFN signature (IFN"€") did not appear
clinically different from patients without this signature
(IENY), Although our cohort is rather small, the results
corroborate those of previous studies [1, 3]. We ob-
served slightly lower lymphocyte counts and slightly
higher neutrophil counts in IFN"8" patients than in
IEN'" patients, but these differences were too small to
fully explain the difference in whole-blood IFN scores
between the two groups. Concordantly, our data suggest
that the whole-blood IEN signature is facilitated by a se-
lective change in PMN sensitivity to type I IEN signaling
rather than by a great difference in cell abundance.

The PMN fraction consists primarily of neutrophils,
which have been shown to play a role in RA. They are
the first cells to enter the joint when the disease starts

and are the most abundant cell type present in the joint
[22, 23]. Neutrophils in the RA joint display a “primed”
phenotype compared with control neutrophils, resulting
in increased cytokine and chemokine production, de-
creased apoptosis rates [24], a gained ability to present
antigens [25], and upregulation of chemokine receptors
to induce migration of other immune cells [26].

We observed that patient PMNs, but not PBMCs,
displayed type I IEN receptor (IFNARI and [FNAR2) up-
regulation compared with healthy control subjects,
which was not completely dependent on the presence of
the IFN signature. It has been suggested that RA neutro-
phils would mainly become primed and activated within
the inflamed joint due to the large amount of cytokines
present. However, the IFNARI and IFNAR?2 upregulation
in the circulating PMNs suggests that these cells could
also have gained a primed phenotype. Wright and
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colleagues described the gene profiles that are induced
upon neutrophil priming with TNF-a or granulocyte-
macrophage colony-stimulating factor, which did not
involve upregulation of IFNARI and even seemed to
cause downregulation of IFNAR2 [27]. Broader gene expres-
sion and protein expression studies on RA PMNs, possibly
paired with synovial PMNs, are required to gain more
insight into the exact gene profile and source of the priming.

It was demonstrated that healthy mature neutrophils
already display increased expression of IFNARI and
IFNAR?2 as well as type I IFN response genes compared
with immature neutrophils [28]. Of interest, these ma-
ture neutrophils were more prone to IFN-a-mediated in-
duction of neutrophil extracellular trap (NET) formation
than immature neutrophils. NETs are extracellular struc-
tures that consist of chromatin and neutrophil-related
proteins and are released by neutrophils under (auto-)in-
flammatory conditions. Neutrophils from RA blood and
synovial fluid have been shown to exhibit increased
spontaneous NET formation compared with neutrophils
from healthy control subjects [29, 30] or patients with
osteoarthritis [31]. A study of patients with systemic
lupus erythematosus demonstrated that NETs contain a
considerable source of type I IFN-inducing agents [32].
Altogether, the upregulation of IJFNARI and IFNAR2 we
observed in RA PMNs, together with the increased
spontaneous NET formation, could contribute to a posi-
tive feedback loop of subsequent NET-mediated type I
IFN production, type I IFN binding, and simultaneous
IRG induction and more NET formation.

It was recently demonstrated that the baseline IFN signa-
ture in RA PMNs is associated with a good response to
anti-TNF therapy [21]. Notably, in earlier studies using
gene expression profiling in whole blood, researchers de-
scribed a relationship only between IFN response regula-
tion and therapeutic response during anti-TNF treatment
and not between the extent of the IFN response and anti-
TNF response prior to the start of therapy [11, 12]. Al-
though the researchers in these previous studies described
different types of anti-TNF treatment and the PMN find-
ings need validation in independent studies, one could
speculate that the PMN fraction is a more homogeneous
source than whole blood to study the IEN signature in rela-
tion to anti-TNF response. Moreover, neutrophils are
known to both bind and secrete TNF-a, and multiple stud-
ies have demonstrated that TNF-a and type I IFNs might
influence each other’s signaling activities [33, 34]. Conse-
quently, the IFN signature in PMNs might be a direct
reflection of high TNF-a activity and therefore indicate in-
creased sensitivity to TNF-a inhibition, ultimately resulting
in a good response to therapy.

The presence of a baseline IFN signature was also
shown to be associated with a poor response to rituxi-
mab treatment [6, 7]. The exact mechanism behind this
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association remains to be elucidated, but it could indi-
cate that patients with an IFN signature have a
neutrophil-dominated pathology and that hence B-cell
depletion would have less effect on disease activity than
in IEN'" patients. Recently, it was shown that rituximab
treatment could lead to late-onset neutropenia in a small
proportion of patients [35]. It would be interesting to
study this in relation to the previously reported associ-
ation of rituximab-related pharmacodynamics of type I
IEN response gene expression and clinical response to
rituximab [10].

Considering these previously described findings regard-
ing the IFN signature in relation to therapy response, we
hypothesize that patients with an IFN signature in the
neutrophils might benefit from therapies that target the
activity of neutrophil-derived cytokines, such as anti-TNF
therapy [21] or tocilizumab therapy [9], whereas patients
without an IFN signature might benefit from rituximab
therapy instead [6, 7]. However, more studies on the exact
role of the IFN signature in neutrophil-related RA path-
ology are required to support this hypothesis.

PMNs are considered one of the first cell types to
enter the joint [22], and the presence of an IFN signa-
ture has been associated with an increased risk to de-
velop arthritis [4, 5], which could indicate that the
neutrophils have been primed and activated to migrate
toward the joint in order to inflict the first damage.
Moreover, it could suggest that patients without an IFN
signature who develop arthritis might have another
mechanism behind the disease’s onset, such as mediation
by B-cell migration [4, 36-38]. Extending the present
study to the preclinical phase of arthritis could develop
more insight into the role of the IFN signature and neu-
trophils in disease onset.

Conclusions

We have conclusively demonstrated that PMNs are the
main contributors to the whole-blood IFN signature
in patients with early arthritis. Considering the well-
established role of neutrophils in the pathology of
arthritis, this suggests a role of type I IFN activity in
the disease as well.
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