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Abstract

Background: Gene therapy has the potential to provide long-term production of therapeutic proteins in the joints of
osteoarthritis (OA) patients. The objective of this study was to analyse the therapeutic potential of disease-inducible
expression of anti-inflammatory interleukin-10 (IL-10) in the three-dimensional micromass model of the human
synovial membrane.

Methods: Synovial tissue samples from OA patients were digested and the cells were mixed with Matrigel to obtain
3D micromasses. The CXCL10 promoter combined with the firefly luciferase reporter in a lentiviral vector was used to
determine the response of the CXCL10 promoter to tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and
lipopolysaccharide (LPS). The effects of recombinant IL-10 on gene expression were determined by quantitative PCR.
The production of IL-10 from the CXCL10p-IL10 vector and the effects on pro-inflammatory cytokine production were
assessed by multiplex ELISA.

Results: Micromasses made from whole synovial membrane cell suspensions form a distinct surface composition
containing macrophage and fibroblast-like synoviocytes thus mimicking the synovial lining. This lining can be
transduced by lentiviruses and allow CXCL-10 promoter-regulated transgene expression. Adequate amounts of IL-10
transgene were produced after stimulation with pro-inflammatory factors able to reduce the production of synovial
IL-1β and IL-6.

Conclusions: Synovial micromasses are a suitable model to test disease-regulated gene therapy approaches and
the CXCL10p-IL10 vector might be a good candidate to decrease the inflammatory response implicated in the
pathogenesis of OA.

Keywords: Osteoarthritis, Gene therapy, Cytokines, Micromasses, Synovium, Inflammation

* Correspondence: fons.vandeloo@radboudumc.nl
Experimental Rheumatology, Department of Rheumatology, Radboud Institute
for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101,
6500 HB Nijmegen, The Netherlands

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Broeren et al. Arthritis Research & Therapy  (2016) 18:186 
DOI 10.1186/s13075-016-1083-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13075-016-1083-1&domain=pdf
mailto:fons.vandeloo@radboudumc.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Osteoarthritis (OA) is the most common joint disease
and no adequate disease-modifying treatments are avail-
able yet [1]. Although the exact etiology of OA is still
unclear and may be dependent on multiple risk factors,
there is increasing evidence that in many OA patients
inflammation is involved in the pathogenesis [2].
Interleukin-1β (IL-1β) and tumour necrosis factor alpha
(TNF-α) are key pro-inflammatory cytokines, primarily
produced by macrophages that infiltrate the synovium
during inflammatory OA [3]. These cytokines trigger the
release of other cytokines and matrix-degrading enzymes
from resident articular cells, including the fibroblast-like
synoviocytes (FLS) that damage the articular cartilage.
This results in the release of damage-associated molecu-
lar patterns (DAMPs) with pro-inflammatory properties,
potentially creating a positive vicious circle of inflamma-
tion and damage [4].
Several strategies have been explored to treat inflam-

mation in the OA joint, including biological therapies
that were developed for the treatment of rheumatoid
arthritis (RA). However, the therapeutic effects are
disappointing [5]. A possible explanation might be the
relatively strong contribution of systemic factors in RA.
In contrast, OA is considered primarily to be a local
process and systemically injected therapeutics may not
reach the target joints in sufficient amounts. Intra-
articular injections are feasible but proteins injected in the
joint are rapidly cleared and consequently the invasive in-
jections have to be repeated increasing the discomfort for
patients [6]. These considerations ask for the development
of a different strategy to obtain long-term drug effects in
the OA joint. Local gene therapy can be a suitable ap-
proach and might even be used to express proteins with a
short half-life like interleukin-10 (IL-10), which is a potent
anti-inflammatory cytokine [7].
Previous studies with IL-10 gene therapy in experimen-

tal models of rheumatoid arthritis have explored the use
of inducible promoters to drive the expression of IL-10
[8–10]. These promoters contain binding sites for tran-
scription factors that are activated during active disease,
which might reduce side effects of continuous IL-10
exposure as observed in patients suffering from chronic
active Crohn’s disease. These patients received daily injec-
tions of high-dose IL-10 and showed a drop in haemoglo-
bin levels [11]. We recently adapted the inducible IL-10
gene therapy to human synovial cells [12]. For this pur-
pose, the promoter from the CXCL10 gene was selected
based on microarray analysis of RA synovium. The in-
flammatory C-X-C motif chemokine 10 (CXCL10) protein
concentration has also been found to be significantly
upregulated in the synovial fluid and in the serum of OA
patients compared to healthy controls [13, 14]. Because
CXCL10 can be expressed from multiple cell types, no

selective expression is expected from the vector [15].
CXCL10 expression is associated with OA-related disease
processes, including inflammation and osteoclastogenesis
[15], which indicates that CXCL10 promoter-driven ex-
pression of IL-10 might be a viable option for the treat-
ment of OA. In addition, the OA synovium could be more
sensitive to IL-10 therapy, because of relatively high
expression of the IL-10 receptor alpha chain as compared
to RA [16].
The CXCL10p-IL10 gene therapy approach showed

promising results in synovial cell suspensions. Based on
the known IL-10 effects we postulate that local IL-10
gene therapy would be efficacious at the early stage of
OA when synovitis is developing and before irreversible
fibrotic changes occur. In this study, we determined the
inflammatory response and anti-inflammatory potential
of the CXCL10p-IL10 lentiviral vector in the three-
dimensional (3D) micromass synovial membrane model.
In a 3D culture model, the cell-matrix and cell-cell inter-
actions are more biologically relevant, providing a more
predictive system for the in vivo situation, compared to
classic two-dimensional (2D) culture [17]. Synovial micro-
masses were generated from primary synovial cells iso-
lated from OA patients by digestion, containing both FLS
and macrophage-like synoviocytes (MLS). The micro-
masses were transduced after establishment of a synovial
lining layer and the CXCL10 promoter was responsive to
lipopolysaccharide (LPS), TNF-α and IL-1β. The activated
promoter could provide therapeutic quantities of IL-10,
which reduced the release of IL-1β and IL-6. These results
show that the CXCL10p-IL10 vector can provide self-
regulated inhibition of the inflammatory response in a
synovial membrane model.

Methods
Patient material
Synovial osteoarthritis (OA) tissue samples were ob-
tained during joint replacement surgery from the
Department of Orthopedics (Radboud University Medical
Center, Nijmegen, The Netherlands). Patients gave their
informed consent and protocols were approved by the
medical ethics committee. In total, synovium of 12 OA
patients was included in this study. The micromasses
shown in Fig. 1a-d were derived from a patient diagnosed
with RA. Before processing, representative samples were
embedded in Tissue-Tek O.C.T. (Sakura, Alphen a/d Rijn,
The Netherlands). Cryosections 7 μm thick were cut using
the Cryostar NX70 (Thermo Fisher Scientific, Waltham,
MA, USA) and stained for hematoxylin and eosin (H&E)
to confirm that the tissue samples contained a synovial
lining. Additional file 1: Figure S1 contains H&E images of
12 patients.
The synovial samples were digested using 50 μg/ml

Liberase TM (Roche, Basel, Switzerland) for 1 h at 37 °C
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in Roswell Park Memorial Institute (RPMI) culture me-
dium without supplementations. The digestion was stopped
by adding 10 % fetal calf serum (FCS). Subsequently, the
synovial cells were passed through a 70-μm cell strainer
(Corning, NY, USA) and centrifuged. All cell centrifuga-
tions were performed for 5 min at 1500 rpm/423 g in a
Heraeus Megafuge 16R (Thermo Fisher Scientific). Red
blood cells were lysed for 2 min at RT using 4 ml RBC
lysis buffer (155 nM NH4Cl, 12 mM KHCO3, 0.1 mM
EDTA, pH 7.3). The lysis reaction was quenched by
adding 6 ml RPMI culture medium, supplemented with
10 % FCS and 1 mM pyruvate and 1 % P/S.

Micromass production and culture
For micromass construction, the synovial cell sus-
pensions were centrifuged and cell pellets were dissolved
in ice-cold Matrigel (Corning) at an average density of
2 × 10E7 cells/ml. Using cooled pipette tips, 25 μl
droplets were placed in 24-well culture plates (Greiner
Bio-one, Alphen a/d Rijn, The Netherlands) or conical 12
ml tubes (Greiner Bio-one), which were coated with poly-
(2-hydroxyethyl methacrylate) (poly-HEMA) (Sigma-
Aldrich, Zwijndrecht, The Netherlands). After 30 minutes
gelation at 37 °C, 500 μl RPMI culture medium, supple-
mented with 10 % heat-inactivated FCS, 1 mM pyruvate
and 1 % P/S was added. Medium was replaced twice
weekly. All cell cultures were kept in humidified atmos-
phere at 37 °C and 5 % CO2. The micromasses were stim-
ulated with E. coli lipopolysaccharide (LPS) (Invivogen,
San Diego, CA, USA), recombinant human TNF-α

(Abcam, Cambridge, UK), recombinant human IL-1β
(R&D systems, Oxford, UK) and recombinant human IL-10
(Life Technologies Europe, Bleiswijk, The Netherlands) at
concentrations and timing as indicated in the text.

Micromass immunohistochemistry
For immunohistochemical analysis, micromasses were fix-
ated for 2 h in 2 % paraformaldehyde in phosphate-
buffered saline (PBS)/1 mM CaCl2, dehydrated and
embedded in paraffin. Sections 7-μm thick were deparaffi-
nized, rehydrated and incubated with antibodies 11-fibrau
(1:100 for 60 minutes) (clone D7-fib, Imgen, distributed
by ITK Diagnostics, Uithoorn, The Netherlands), mouse
anti-human cluster of differentiation 68 (CD68) (1:100 for
60 minutes) (M0814, DAKO, Heverlee, Belgium) or con-
trol mouse IgG2ak (X0943, DAKO) and IgG1k (X0931,
DAKO) respectively. Endogenous peroxidase activity was
blocked with 3 % H2O2 (Merck Millipore, Amsterdam,
The Netherlands) in methanol. Subsequently, the sections
were incubated with the secondary horseradish peroxidase
(HRP)-conjugated rabbit-anti-mouse IgA/G/M (1:200 for
60 minutes) (P0260, DAKO). Peroxidase was developed
with diaminobenzidine and counterstained with hema-
toxylin for 60 seconds.

Plasmid cloning and lentivirus production
For the production of lentiviral vectors, we made use of
the third-generation self-inactivating lentiviral (SIN) vec-
tor system. The vector for pRRL-cPPT-CXCL10p-IL10-
PRE-SIN has been described previously [12]. To obtain

Fig. 1 Immunohistochemical detection of fibroblasts and macrophages in synovial micromasses. Synovial micromasses were generated from
digested synovial tissue cell suspension and cultured for 7 days. a IgG control antibody for 11-Fibrau staining. b 11-fibrau (brown) staining for
synovial fibroblasts. c IgG control antibody for CD68 staining. d CD68 staining (brown) for macrophages. e Confocal fluorescent image of the
micromass after transduction with lentiviral PGK-GFP. Side view with DAPI (blue) and GFP (green) staining. The micromasses used in Fig. 1a-d
were derived from RA material and similar results were obtained staining OA micromass sections
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the pRRL-cPPT-PGK-IL10-PRE-SIN vector, the phospho-
glycerate kinase (PGK) luciferase vector from our previous
studies [18] was predigested and the CXCL10p-IL10
vector was digested with SalI and NheI (New England
Biolabs, Ipswich, MA, USA) and the IL-10 gene was
ligated in the predigested PGK promoter vector. For gen-
eration of the CXCL10p-fluc-RPL22p-rluc dual-luciferase
vector, a new multiple cloning site (MCS) was inserted in
the SIN vector between the SalI and NheI sites, containing
restriction sequences for XhoI-AgeI-SpeI-PmeI-AfeI-
AscI-SalI-HpaI-NheI. The XhoI overhang from the MCS
was compatible with the SalI overhang from the SIN vec-
tor. The MSC was used to clone the RPL22 promoter
(cloned from human gDNA (Promega), the renilla lucifer-
ase gene from the pMCS-green Renilla luciferase vector
(Thermo Fisher Scientific, Waltham, MA, USA) and the
CXCL10 promoter in one construct. The promoter from
the RPL22 gene was selected based on low variability in
multiple microarrays [19]. All primer sequences are listed
in Table 1. The lentivirus production, purification and
quantification were performed as described previously
[12]. Transduction of micromasses was performed with
150 ng virus/micromass in complete RPMI medium sup-
plemented with 8 μg/ml polybrene (Sigma-Aldrich).

Confocal microscopy
For confocal microscopy, day 9 micromasses produced
from an OA patient were transduced with lentiviral PGK-
GFP and fixed in 1 % paraformaldehyde, 48 h after trans-
duction. Micromasses were stained with DAPI (Molecular
Probes, Eugene, OR, USA) at a concentration of 0.2 ug/ml
in PBS for 10 minutes, followed by three washing steps in
PBS. Micromasses were mounted in Fluoromount-G
(Southern Biotech, Birmingham, AL, USA). Confocal pic-
tures were taken at ×200 magnification using the Olympus

Fluoview FV1000 laser scanning microscope (Olympus,
Zoeterwoude, The Netherlands). 4′,6-diamidino-2-
phenylindole (DAPI) and green fluorescent protein
(GFP) were imaged using lasers at excitation wavelengths
of 405 nm and 488 nm respectively. Image processing was
performed using the Fluoview Viewer Software V4.1
(Olympus).

Flow cytometry
For flow cytometry analysis, micromasses were melted on
ice for 2 h, 48 h after transduction with lentiviral PGK-GFP.
The cell suspension was incubated with antibodies 11-
Fibrau and subsequently with donkey-anti-mouse conju-
gated to Alexa Fluor 568 (1:100 for 30 minutes) (A-10037,
Thermo Fisher Scientific), or cell suspensions were
incubated with mouse-anti-human CD68, conjugated to
PE (1:20 for 60 minutes) (12-0689, eBioscience, San Diego,
CA, USA). The flow cytometry was performed on the
FACS Cyan (Beckman Coulter, Woerden, The Netherlands)
using the 488 nm laser at the FL1, FL3 and FL7 channels
for GFP, 11-Fibrau and CD68 respectively.

Luciferase measurements
The luciferase measurements were performed in 96-well
white clear-bottom plates (Greiner Bio-one) using the
Dual-Glo luciferase assay system (Promega). Micro-
masses were transferred to a well and lysed in Dual-Glo
reagent for 10 minutes. Firefly luciferase light produc-
tion was measured on a Clariostar (BMG, Offenburg,
Germany). Subsequently, the lysates were incubated for
10 minutes with Stop & Glo before measuring the
Renilla luciferase light production. The values were cor-
rected for the background signal and depicted as relative
light units (RLU).

RNA isolation and quantitative polymerase chain
reaction (qPCR)
RNA isolation and qPCR were performed as described
previously [20]. The primer sequences are listed in
Table 1.

Multiplex enzyme-linked immunosorbent assay
(ELISA) assay
Cytokine concentrations were determined by luminex
multianalyte technology on the Bio-Plex 200 (Bio-Rad,
Hercules, CA, USA) in combination with Bio-Plex pro
human cytokine kits (Bio-Rad) according to the manu-
facturer’s protocol. For IL-10 and interleukin-6 (IL-6)
measurements, the micromass culture supernatants were
first diluted 25 times. Samples below the detection limit
were set at the lowest measureable quantity to perform
statistical analysis.

Table 1 List of oligonucleotide primer sequence

Oligo description Sequence (5′→ 3′)

MCS_oligoA TCGAGACCGGTACTAGTGTTTAAACAGCGCTGGCGC
GCCGTCGACGTTAACG

MCS_oligoB CTAGCGTTAACGTCGACGGCGCGCCAGCGCTGTTTA
AACACTAGTACCGGTC

RPL22_prom_FW TTTTACTAGTGGCGGCCTGGCTACAGCAAA

RPL22_prom_RV TTTTGGATCCGGCGGCAGCGGAGTTAGAAAG

GAPDH_qPCR_FW ATCTTCTTTTGCGTCGCCAG

GAPDH_qPCR_RV TTCCCCATGGTGTCTGAGC

SOCS3_qPCR_FW TCGGACCAGCGCCACTT

SOCS3_qPCR_RV CACTGGATGCGCAGGTTCT

TNFa_qPCR_FW TCTTCTCGAACCCCGAGTGA

TNFa_qPCR_RV CCTCTGATGGCACCACCAG

IL-1b_qPCR_FW TGGGTAATTTTTGGGATCTACACTCT

IL-1b_qPCR_RV AATCTGTACCTGTCCTGCGTGTT
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Statistical analysis
Statistical analysis was performed using the Student’s t
test, one-way analysis of variance (ANOVA) and two-
way ANOVA. Results are depicted as mean +/- SD and
P values < 0.05 were regarded as significant. For statis-
tical comparisons between conditions including multiple
patients, patients were first individually normalized for
the control conditions.

Results
The synovial micromass membrane contains FLS and MLS
In previous studies that used the synovial micromass
model, primary FLS were used that had been cultured
for multiple passages. However, sustained culture of FLS
can result in phenotype alterations [20] and in FLS
micromasses the contribution of MLS is omitted. There-
fore, we first tested the ability of synovial cell suspen-
sions derived from digested synovium to form a lining
layer in micromass culture. After 7 days, cells had mi-
grated to the micromass-medium interface and resem-
bled a synovial membrane (Fig. 1). The sections were
stained using the 11-fibrau antibody, which revealed that
most cells in the lining are synovial fibroblast-like cells
(Fig. 1b). In addition, we performed a staining for the
macrophage marker CD68. Macrophages were also
present in the micromasses and appeared in the lining at
day 7 (Fig. 1d). This shows that the synovial micromass
model can be used to study a membrane that resembles
the architecture and composition of the synovial lining.
When the micromasses were transduced with a lentiviral
PGK-GFP vector, GFP expression was mainly observed
in the lining layer (Fig. 1e) and to a lesser extent in the
sublining. The transduction efficiency and virus tropism
were assessed using flow cytometry. Around 6 % of the
cells expressed GFP after transduction and both FLS (6.7 %
of the 78.7 % 11-fibrau-positive cells) and MLS (5.3 %
of the 38.0 % CD68-positive cells) were transduced
(Additional file 2: Figure S2).

The CXCL10 promoter responsiveness in synovial
micromasses
The micromasses were transduced with a lentiviral vec-
tor to study the response of the CXCL10 promoter, the
promoter of our choice to obtain autoregulated trans-
gene expression. The vector contained a CXCL10p-firefly
luciferase reporter and an 60S ribosomal protein L22
(RPL22p)-renilla luciferase gene to correct for micromass
cellularity and transduction efficiency. Micromasses were
transduced after forming a lining to resemble the in vivo
synovial membrane transduction and stimulated with LPS,
TNF-α or IL-1β for 6 hours. Previous studies have found
an upregulation of multiple plasma proteins in the OA syn-
ovial fluid, which similar to DAMPs can activate macro-
phages in a TLR-4-dependent manner [13]. We therefore

included the TLR-4-specific stimulus LPS in our studies.
Although not significant for every individual patient, stimu-
lation with LPS, TNF-α or IL-1β resulted in a significant
upregulation of CXCL10 promoter activity (Fig. 2a-c).
These results show that the cells in the micromass lining
can be transduced by lentiviruses and disease-related
triggers can activate the CXCL10 promoter. Interestingly,
one patient (OA4) showed no significant response to any of
the stimuli.

The effects of IL-10 protein on synovial micromasses
After having established that the CXCL10 promoter can
mediate regulated expression in OA synovial micro-
masses, we set out to determine whether the transgene
IL-10 can be a potential candidate for local treatment of
OA. We first determined if IL-10 can lead to suppressor
of cytokine signaling 3 (SOCS3) expression in the syn-
ovial micromasses. After 2 h stimulation with recombin-
ant IL-10, SOCS3 was significantly upregulated (Fig. 3a).
In addition, SOCS3 expression could also be induced by
LPS and TNF-α as previously described [21]. Stimulation
of the micromasses with LPS and TNF-α for 4 h resulted
in significant upregulation of TNF-α and IL-1β mRNA
(Fig. 3b,c). In LPS-stimulated conditions, IL-10 could re-
duce this induction. IL-6 was also upregulated after pro-
inflammatory stimulation (Fig. 3c), but IL-10 could not
reduce IL-6 expression. These results show that cells
from the synovial micromass are responsive to IL-10
and downregulate the production of cytokines after
stimulation, possibly via the induction of SOCS3.
We subsequently determined if the inducibility of the

CXCL10 promoter can be used to provide relevant IL-10
levels in synovial micromasses. After formation of the
lining, the micromasses were transduced with IL-10 len-
tiviruses under control of the constitutive active PGK
promoter or the inducible CXCL10 promoter. The IL-10
levels in the supernatant of the micromasses were deter-
mined after 24 h stimulation with LPS and TNF-α.
Micromasses transduced with PGK-luciferase control
virus only produced low quantities of IL-10, indicating
that the background production of endogenous IL-10 is
low, even after stimulation with LPS or TNF-α (Fig. 4).
Under control of the PGK promoter, high levels of IL-10
were secreted into the supernatant, which did not sig-
nificantly differ after stimulation with LPS or TNF-α. In
contrast, micromasses transduced with CXCL10p-IL10
showed an increase in IL-10 production after stimulation
with either LPS or TNF-α.
Next, we used the micromass culture supernatants to

investigate if the IL-10 production from the transduced
micromasses can influence the inflammatory response in
the synovial lining. Under control conditions without
stimulation, the micromasses already produced the pro-
inflammatory cytokines IL-1β and IL-6 (Fig. 5a,b). The
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Fig. 2 Activation of the CXCL10 promoter in synovial cell micromasses by LPS, TNF-α and IL-1β. Synovial micromasses of four OA patients were
transduced with the CXCL10p-fluc-RPL22p-rluc dual-luciferase construct and stimulated for 6 h with (a) 100 ng/ml LPS, (b) 10 ng/ml TNF-α or
(c) 10 ng/ml IL-1β and compared to the unstimulated medium condition. The signal ratio was calculated as fireflyRLU/renillaRLU +/- SD. Micromasses
are depicted as individual points and different colours represent different patients. Statistical analysis between medium and stimulated condition
was performed by Student’s t test and comparisons within individual patient samples were calculated by two-way ANOVA. *P < 0.05, **P < 0.01. IL-1β
interleukin-1 beta, LPS lipopolysaccharide, TNF-α tumour necrosis factor alpha
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Fig. 3 (See legend on next page.)
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production increased after stimulation with LPS or TNF-
α, which has also been observed in vivo [22]. The stimula-
tory effects of LPS and TNF-α on the release of IL-1β
could be abolished by both constitutive (84.8 % after LPS
and 83.9 % after TNF-α) and inducible (70.7 % after LPS
and 87.4 % after TNF-α) expression of IL-10. Similar ef-
fects were observed for LPS-induced IL-6 secretion
(Fig. 5b). After stimulation with LPS, the IL-6 production
was decreased by 67.1 % by PGK-IL10 and 71.0 % by
CXCL10p-IL10. TNF-α was below detection limits in
multiple unstimulated micromasses (Fig. 5c). After stimu-
lation with LPS, TNF-α was produced by the micro-
masses, but virus treatment showed no significant effects.
These results show that treatment of a synovial lining with
the inducible CXCL10 promoter for the expression of
IL-10 can reduce the production of pro-inflammatory
cytokines and can inhibit stimulation of the lining.

Discussion
In this study we set out to study the therapeutic poten-
tial of disease-inducible gene therapy for OA using the
CXCL10p-IL10 lentivirus in a synovial lining model
resembling early-stage OA that includes both synovial
fibroblasts and synovial macrophages. After digestion of
a synovial tissue sample the cells were mixed with
Matrigel to obtain a synovial micromass, in which both
FLS and MLS migrated to the micromass edge to form a
lining. After transduction with a lentiviral CXCL10-
promoter reporter vector, the CXCL10 promoter could
be significantly induced by pro-inflammatory stimula-
tion. When the CXCL10 promoter drove the expres-
sion of the gene coding for anti-inflammatory IL-10,
sufficient IL-10 could be produced to reduce the
release of IL-1β and IL-6 after stimulation with TNF-α
or LPS.

(See figure on previous page.)
Fig. 3 Gene expression in synovial micromasses after stimulation with LPS and TNF-α in the absence or presence of IL-10. Micromasses from
synovial cell suspensions (three per group) were cultured until lining formation was evident. Subsequently, the micromasses were stimulated for 2 h or
4 h with medium containing 100 ng/ml LPS, 10 ng/ml TNF-α, 10 ng/ml IL-1β in the absence and presence of 10 ng/ml IL-10. Gene expression levels of
SOCS3 at 2 h (a), TNF-α at 4 h (b), IL-1β at 4 h (c) and IL-6 at 4 h (d) were measured. Expression levels are depicted as threshold cycle (Ct) +/- SD, corrected
for GAPDH expression. Statistical comparison within stimulation groups was performed by two-way ANOVA and between groups by one-way ANOVA.
*P< 0.05, **P< 0.01, ***P< 0.001. IL-1β interleukin-1 beta, IL-6 interleukin-6, LPS lipopolysaccharide, SOCS3 suppressor of cytokine signaling 3, TNF-α tumour
necrosis factor alpha

Fig. 4 Production of IL-10 by transduced micromasses. Micromasses from synovial cell suspensions were transduced with lentiviral vectors coding
for PGK-luciferase, PGK-IL10 or CXCL10p-IL10 after formation of a synovial lining. Subsequently, the micromasses were stimulated with medium
containing 100 ng/ml LPS (a) or 10 ng/ml TNF-α (b). The IL-10 concentration in the supernatant after 24 h was measured using a multiplex ELISA
assay. Concentrations below 1 pg/ml were included in the statistical analysis, but are shown as 1 pg/ml in the Figure. An insufficient number of
micromasses could be generated from patients 10 and 12 to determine the response to TNF-α. The medium, LPS- and TNF-α-stimulated groups
were compared by one-way ANOVA. *P < 0.05, **P < 0.01. IL-10 interleukin-10, LPS lipopolysaccharide, TNF-α tumour necrosis factor alpha
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In vitro studies with human synovial cells are often
performed in monolayer culture, in which the cells
might behave and interact differently from the complex
structural organization in the joint [23]. To improve in
vitro synovium studies, Kiener at al. developed a 3D syn-
ovial lining model [24]. Primary FLS are mixed with
Matrigel to form a micromass structure, in which the
FLS migrate towards the outside to form a lining layer, a
phenomenon not observed with dermal fibroblasts. The

micromass lining shows many similarities to the synovial
lining. It expresses the synovial fibroblast marker pro-
teoglycan 4 (PRG4) and produces extracellular matrix
[25]. MLS were not included in these studies, but the
FLS could support the survival of monocytes from per-
ipheral blood.
Interestingly, macrophages in culture without the ap-

propriate stimulation undergo apoptosis [26]. Kiener et
al. showed that primary monocytes from the blood are

Fig. 5 Cytokine production by stimulated micromasses treated with IL-10 viral vectors. Micromasses from synovial cell suspensions of five patients
were transduced with lentiviral vectors coding for PGK-luciferase, PGK-IL10 or CXCL10p-IL10 after formation of a synovial lining. Subsequently, the
micromasses were stimulated with medium containing 100 ng/ml LPS (all patients) or 10 ng/ml TNF-α (three patients). The concentrations of
IL-1β (a), IL-6 (b) and TNF-α (c) in the supernatant after 24 h were measured using a multiplex ELISA assay. IL-1β and TNF-α could only be quantified in
three patients. Because of high variations in IL-6 production between patients, the values were first normalized for every individual patient for PGK-luc
unstimulated. The basal values (pg/ml) were 2.7 × 105, 6.5 × 105, 2.7 × 104, 5.1 × 104 and 3.3 × 105 respectively. The medium, LPS- and TNF-α-stimulated
groups were compared by t test. Significancies without a capped line were compared to PGK-luc. *P < 0.05, **P < 0.01, ***P < 0.001. IL-1β interleukin-1
beta, IL-6 interleukin-6, LPS lipopolysaccharide, TNF-α tumour necrosis factor alpha
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not viable in micromasses when cultured alone, but could
survive for over 3 weeks when cultured together with FLS
[25]. We showed that the micromasses can also support
the survival of synovial macrophages and that the macro-
phages resided in the lining. Because the micromasses do
not show the fibrotic changes and macromolecular cartil-
age and bone detritus-rich synoviopathy observed in late-
stage OA, the synovial micromass might more closely
mimic early-stage OA compared to synovial explants from
joint replacement remnants. This enables the possibility to
test therapeutic strategies in an early disease stage where
inhibition of inflammation might prevent disease
progression.
During inflammation, synovial macrophages become ac-

tivated and produce pro-inflammatory cytokines, matrix-
degrading enzymes and promote synovial hyperplasia [27].
The synovial micromass model based on primary tissue
digestions can be a suitable model to study these pro-
cesses. The inclusion of MLS in the micromasses is par-
ticularly important for testing IL-10-based therapies, since
the primary receptor subunit for IL-10, IL-10 receptor
subunit alpha (IL-10R1), is most strongly expressed on
cells of hematopoietic origin [28, 29]. After transduction
of the micromasses with lentiviral PGK-GFP, transgene ex-
pression was predominantly observed in the membrane,
which is similar to observations with intra-articular injec-
tions of lentivirus in vivo [30], providing further support
that micromasses are an adquate model for the synovial
membrane.
IL-10 is a powerful anti-inflammatory cytokine and

IL-10-based gene therapy has proven to be effective in
multiple animal models of OA and cartilage damage,
alone and in combination with IL-1 receptor antagonist
(IL-1Ra) or interleukin-4 (IL-4) [31, 32]. Low innate pro-
duction of IL-10 by blood cells upon lipopolysaccharide
(LPS) stimulation ex vivo is associated with an increased
risk of OA [33]. In addition, it has been concluded from a
systematic review that physical exercise has positive effects
on pain and disability in knee OA [34]. These effects
might be mediated by IL-10, which was found to be up-
regulated in the synovial fluid after exercise [35]. In
addition to the inhibition of inflammation and matrix-
degrading enzymes, IL-10 has chondroprotective and
anabolic effects on cartilage by stimulating chondrocyte
proliferation, stimulating the production of extracellular
matrix components and reducing chondrocyte apoptosis
[2, 36]. One of the mechanisms by which IL-10 can exert
its anti-inflammatory effects, is by inducing the expression
of SOCS3 [37]. SOCS3 can inhibit Janus kinase signal
transducer and activator of transcription (JAK-STAT)
signaling induced by cytokine receptor activation [38]. A
second anti-inflammatory mechanism proposed for IL-10
is the inhibition of proteins that stabilize TNF-α messen-
ger RNA (mRNA) [39]. As a result, the TNF-α mRNA

becomes prone to degradation mediated by the 3′UTR
AU-rich elements (AREs). We have found both upregula-
tion of SOCS3 and reduced levels of TNF-α mRNA after
treatment with recombinant IL-10, indicating that IL-10
might inhibit the inflammatory response in synovial
micromasses at multiple levels.
The levels of TNF-α, IL-1β and IL-6 are increased in

OA patients and high levels are associated with increased
radiographic progression [40]. We have observed in-
creased production of these cytokines by the micromasses
under inflammatory conditions. TNF-α and IL-1β mRNA
could be downregulated by IL-10 and the produced levels
of IL-1β and IL-6 decreased after treatment with both
PGK-IL10 and CXCL10p-IL10. Interestingly, the variation
in basal IL-10 production between patients after trans-
duction with CXCL10p-IL10 was bigger compared to the
IL-10 production after stimulation with LPS or after
transduction with PGK-IL10 (Fig. 4). The variation in basal
IL-10 production from the CXCL10p-IL10-transduced
micromasses might result from a variation in tissue com-
position or differences in inflammatory imprinting of
synovial cells between patients rather than transduction
efficiency, because less variation in IL-10 production after
transduction with PGK-IL10 was observed.

Conclusions
We showed that 3D micromasses that are made from pri-
mary synovial cells of OA patients form a synovial lining
consisting of fibroblast-like and macrophage-like synovio-
cytes and the micromasses might be a useful tool to study
synovium in vitro. The micromass lining can be transduced
by lentiviruses and provide disease-inducible expression of
sufficient amounts of IL-10 to reduce the production of
pro-inflammatory cytokines by the micromasses. Gene
therapy with the CXCL10p-IL-10 vector might be a prom-
ising strategy for local treatment of early OA.

Additional files

Additional file 1: Figure S1. HE stainings of 7 μm cryosections
obtained from patient biopsies used in this study. (TIF 15170 kb)

Additional file 2: Figure S2. Scatter plots of flow cytometry analysis of
micromasses transduced with PGK-GFP. Seven days after formation, the
micromasses were transduced with lentiviral PGK-GFP. Forty-eight hours after
transduction, the micromasses were melted and stained for FLS (11-Fibrau)
and MLS (CD68) markers. Cells were first gated for the live gate. (A) GFP
signal and forward scatter (B) GFP signal and 11-Fibrau signal (C) GFP signal
and CD68 signal. The scatter plots are representative for multiple experiments.
(TIF 2114 kb)
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