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Plasma, urine and ligament tissue
metabolite profiling reveals potential
biomarkers of ankylosing spondylitis using
NMR-based metabolic profiles
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Abstract

Background: Ankylosing spondylitis (AS) is an autoimmune rheumatic disease mostly affecting the axial skeleton.
Currently, anti-tumour necrosis factor α (anti-TNF-α) represents an effective treatment for AS that may delay the
progression of the disease and alleviate the symptoms if the diagnosis can be made early. Unfortunately, effective
diagnostic biomarkers for AS are still lacking; therefore, most patients with AS do not receive timely and effective
treatment. The intent of this study was to determine several key metabolites as potential biomarkers of AS using
metabolomic methods to facilitate the early diagnosis of AS.

Methods: First, we collected samples of plasma, urine, and ligament tissue around the hip joint from AS and
control groups. The samples were examined by nuclear magnetic resonance spectrometry, and multivariate data
analysis was performed to find metabolites that differed between the groups. Subsequently, according to the
correlation coefficients, variable importance for the projection (VIP) and P values of the metabolites obtained in the
multivariate data analysis, the most crucial metabolites were selected as potential biomarkers of AS. Finally,
metabolic pathways involving the potential biomarkers were determined using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database, and the metabolic pathway map was drawn.

Results: Forty-four patients with AS agreed to provide plasma and urine samples, and 30 provided ligament tissue
samples. An equal number of volunteers were recruited for the control group. Multidimensional statistical analysis
suggested significant differences between the patients with AS and control subjects, and the models exhibited
good discrimination and predictive ability. A total of 20 different metabolites ultimately met the requirements
for potential biomarkers. According to KEGG analysis, these marker metabolites were primarily related to fat
metabolism, intestinal microbial metabolism, glucose metabolism and choline metabolism pathways, and they
were also probably associated with immune regulation.

Conclusions: Our work demonstrates that the potential biomarkers that were identified appeared to have
diagnostic value for AS and deserve to be further investigated. In addition, this work also suggests that the
metabolomic profiling approach is a promising screening tool for the diagnosis of patients with AS.
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Background
Ankylosing spondylitis (AS) is a form of chronic inflam-
matory arthritis that predominantly affects the axial
skeleton causing patients to experience severe stiffness
and pain [1]. In addition, AS affects the peripheral joints
and is exhibited by extra-articular symptoms such as in-
flammatory bowel disease (IBD) and uveitis [2]. Because
early AS is often asymptomatic or does not show obvious
pathological changes, the diagnosis of AS is not prompt.
Although the significance of early intervention has been
well-recognized for a long time, the diagnostic criteria for
early-stage AS may be difficult to apply, leading to delay
in the use of appropriate intervention [3].
Currently diagnosing AS is a clinically driven process

based on the observation of clinical symptoms and
structural changes on x-rays. The structural changes on
x-rays are the result of the inflammatory process but do
not make the inflammatory process itself known [4]. It
takes several years before the changes are visible on x-
rays. Diagnostic biomarkers such as rheumatoid factor
or autoantibodies against citrullinated proteins are
used for the early diagnosis of rheumatoid arthritis
(RA) with high specificity and selectivity [5, 6]. How-
ever, potential markers for the diagnosis of AS, such as
immunoglobulin G (IgG), IgA or C-reactive protein,
have not achieved sufficient diagnostic sensitivity or
specificity [7]. Additionally, the high association of hu-
man leucocyte antigen B27 with AS, combined with a
relatively high population prevalence, does not make it
a good candidate for use as a diagnostic marker alone,
but it may be useful in a combined model [4].
With the advent of microarray techniques many

pathological processes can be explored and monitored
globally with the aid of omics-driven, high-throughput
technologies [8]. Genomics, transcriptomics and proteo-
mics have emerged as biochemical profiling tools to pro-
vide important insight into the biology of various diseases
[9]. However, these profiling methods are focused only on
upstream genetic and protein variations [10]. As a rapidly
developing field of systems biology, metabolomics rep-
resents a new method that delineates a wide panel of
metabolic parameters and thus allows a global and
potentially more personalized diagnostic method to be
used in combination with conventional protocols [11].
The fundamental basis for the application of clinical
metabolomics is that perturbations are in biological
[12]. To date, metabolic profiling has been used to
identify potential biomarkers for other arthritic diseases,
including RA [13], osteoarthritis [14] and gout [15].
Several research studies but not many, have used

metabolomics in the study of AS. For example, Fischer
et al. found that vitamin D3 metabolites were down-
regulated in AS [16]. Gao et al. found that the plasma
concentrations of some amino acids were abnormally

changed in AS [8]. In addition, Chen et al. found that
some plasma fatty acid chains in AS could be used as
potential biomarkers [1]. All of the research described
above used only plasma as a test sample and mass spec-
trometry (MS) as a detection method.
The two most powerful and most commonly used analyt-

ical methods for metabolic fingerprinting are MS and nu-
clear magnetic resonance (NMR) spectrometry [17]. NMR
is a non-invasive and non-destructive technique that can
provide complete structural analysis of a wide range of or-
ganic molecules in complex mixtures [18]. It has a series of
advantages compared with MS including simple sample
preparation, not requiring chromatographic separation and
being inexpensive on the basis of consumables [19]. Al-
though a growing number of NMR-based metabolomic
studies are aimed at finding potential biomarkers of several
diseases, such as RA [13], prostate cancer [20] and diabetes
[21], there have been no reports of using an NMR method
to investigate the differences of metabolites in AS. Urine
and plasma are the most frequently used specimens for ex-
ploring the systematic alteration of metabolites in humans
because the collection and handling of these specimens are
relatively easy [22]. Furthermore, pathologic tissues have
been used as samples for metabolic profiling in a growing
number of studies because these tissues can provide more
metabolic information directly related to these diseases
[19, 20]. However, thus far, only plasma has been used as a
research sample for metabolomic studies of AS, and the
results may not be comprehensive.
In the present study using NMR spectroscopy, we

performed metabolic profiling to observe the metabolites in
plasma and urine samples of patients with AS and healthy
control subjects. Furthermore, to provide complementary
information on metabolites in intact tissues, ligament tis-
sues surrounding hip joints of patients with AS who were
scheduled for hip arthroplasty were collected for metabolo-
mic analysis. The hip joint is the most easily involved
peripheral joint of AS, and ossification of the ligament is
the most important pathological change [23], these are the
main reasons why this ligament tissue was chosen as the
test sample. To the best of our knowledge, this study is the
first in which NMR has been used as a detection method
and in which biological samples other than plasma have
been used as test samples to perform a metabolomic study
of AS to identify more suitable potential biomarkers.

Methods
Patients
Volunteers were recruited mainly from among patients
with AS who were admitted to the rheumatology and
immunology clinic of our hospital (Changhai Hospital,
Shanghai, China) to participate in plasma and urine ana-
lyses in this study between June 2014 and June 2015.
Volunteers were also recruited for the sample analysis of
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ligament tissues surrounding hip joints of patients with
AS who were scheduled for hip arthroplasty in the
department of orthopaedics of our hospital between June
2013 and June 2015. The inclusion criteria for recruit-
ment were as follows: aged >18 years with an independ-
ent right to sign a consent form and with a diagnosis of
AS (1984 New York modified criteria) [24]. The exclu-
sion criteria were as follows: patients with other systemic
diseases (hypertension, diabetes and the comorbidities of
AS), patients with a history of taking medication within
the last week (e.g., treated with anti-tumour necrosis fac-
tor α [anti-TNF-α], taking disease-modifying anti-
rheumatic drugs or non-steroidal anti-inflammatory
drugs), and patients who had breakfast in the morning
before they came to the outpatient clinic (for plasma
and urine samples). Additionally, age- and sex-matched
volunteers were recruited from among the healthy popu-
lation for routine physical examinations in our hospital
as control subjects for plasma and urine sample analysis,
and their exclusion criteria were the same as those for
the AS group. Volunteers were also recruited from
among patients admitted to the emergency department
of our hospital for the surgical treatment of femoral
neck fracture (FNF) as control subjects for ligament tis-
sue sample analysis (no other underlying diseases were
allowed for these patients to be included). All proce-
dures performed in this study involving human partici-
pants were carried out in accordance with the 1964
Helsinki declaration and its later amendments or com-
parable ethical standards. This clinical study was ap-
proved by the ethics committee of Changhai Hospital
(CHEC2013-176).

Sample collection and processing
Urine and plasma samples were collected from all of the
fasting volunteers in the morning. Blood samples were
first placed in heparin anti-coagulation tubes at room
temperature and then centrifuged at 4 °C (5000 rpm
for 10 minutes) [25]. Next the supernatant plasma was
divided into aliquots of 300 μl in epoxy epoxide (EP)
tubes and stored at −80 °C for later detection and analysis.
Urine samples were collected and then centrifuged at 4 °C
within 30 minutes (6000 rpm for 15 minutes). After that
step, the supernatant was divided into aliquots of 540 μl in
EP tubes and stored at −80 °C for later detection and ana-
lysis [26].
Samples of ligament tissue surrounding the hip joints

were collected from the volunteers during hip surgery.
In the operating theatre, the ligament tissue was cut into
small pieces of 1 cm3 each, aliquoted in cryogenic tubes
and then stored in a liquid nitrogen tank [23]. The liquid
nitrogen tank was brought to the laboratory, and the tis-
sue was immediately homogenized into powder using an
electric tissue homogenizer (60 Hz for 40 seconds). The

powder was removed into an EP tube and weighed.
Then, extract solution (2.85 ml/g distilled water + 4 ml/g
methanol and chloroform) was added. Samples were
vortexed for 15 seconds three times and kept on ice
in between. Last, samples were centrifuged at 4 °C
(10,000 × g for 10 minutes). Three hundred microliters
of each supernatant (polar extracts) and subnatant
(non-polar extracts) were removed into two EP tubes.
Dried products of the supernatant and subnatant were
obtained using freeze-drying treatment and a nitrogen
blowing instrument, respectively, and they were stored
at −80 °C for detection and analysis [27].

Sample preparation and spectroscopy
The plasma samples were prepared for NMR analysis by
mixing 300 μl of plasma with 300 μl of PBS (1.5 M
NaH2PO4/K2HPO4 pH 7.4, 10 % vol/vol D2O) contain-
ing 0.6 mg of 3-trimethylsilyl-2,2,3,3-d4-propionate
(TMSP) as a chemical shift reference (δ = 0.00 ppm).
Urine samples (540 μl mixed with 60 μl of PBS) and
tissue extracts (mixed with 600 μl of PBS) were proc-
essed similarly. All of the samples were then centrifuged
at 4 °C (12,000 rpm for 10 minutes), and the superna-
tants were pipetted into 5-mm NMR tubes for NMR
analysis [27].
The proton NMR spectra of the plasma, urine and tissue

extract samples were recorded at 300 K on a Bruker Avance
II 600-MHz spectrometer (Bruker BioSpin, Rheinstetten,
Germany) operating at a 1H frequency of 600.13 MHz and
equipped with a broadband observe probe.
Standard water-suppressed one-dimensional spectra of

urine and tissue extracts were acquired using the first
increment of the gradient-selected nuclear Overhauser ef-
fect spectroscopy pulse sequence (recycle delay-90 degrees-
t1-90 degrees-tm-90 degrees-acquire data) with a recycle
delay of 2 seconds, a t1 of 3 microseconds, a mixing time
(tm) of 100 milliseconds and a 90-degree pulse length of
13.70 microseconds. A total of 128 transients were ac-
quired in 49,187 data points using a spectral width of
9590 Hz and an acquisition time of 2.56 seconds. For
plasma, a water-presaturated Carr-Purcell-Meiboom-
Gill pulse sequence (recycle delay-90 degrees-(τ-180
degrees-τ)n-acquisition) was employed to attenuate the
NMR signals from macromolecules. A spin-spin relax-
ation delay (2nτ) of 76.8 milliseconds and a spin-echo
delay τ of 400 microseconds were used. Typically, the
90-degree pulse was set to 13.7 microseconds, and 32
transients were collected in 49,178 data points for each
spectrum using a spectral width of 9590 Hz. Other
acquisition parameters were the same as described
above [28]. After the Fourier transformation, phase
correction and baseline correction were performed
using the TopSpin version 3.0 software package
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(Bruker BioSpin). The 1H chemical shifts were refer-
enced to the TMSP peak at δ = 0.00.

Multivariate data analysis
Multivariate statistical analysis can take internal relation-
ships and mutual influence between the variables into
account; therefore, the use of multivariate statistical
analysis was more reasonable than univariate statistical
analysis with respect to the data source, with many ob-
jectively existing variables and mutual influences.
Multivariate statistical analysis, including principal
component analysis (PCA), partial least squares dis-
criminant analysis (PLS-DA) and orthogonal projection
to latent structures discriminant analysis (OPLS-DA),
was performed to globally understand the metabolic
changes of AS.
PCA was performed using the SIMCA-P version 11.5

software package (Umetrics AB Umea, Sweden). PCA
is an unsupervised analytical pattern recognition tool
that provides an overview of complex data through
examination of the covariance structure. The multi-
variate data can be displayed in a few principal compo-
nents as a set of ‘scores’ that highlight general trends
and outliers [29].
PLS-DA and OPLS-DA were performed using a unit

variance scaled approach based on the SIMCA-P ver-
sion 11.5 software package (Umetrics AB). PLS-DA is
a supervised regression method used to maximize the
covariance between the predictor space and the re-
sponse space. It can predict responses in the popu-
lation using the predictor matrix. OPLS-DA was
performed with the NMR data to facilitate interpret-
ation of the loading. The model coefficients were back-
calculated from the coefficients incorporating the
weight of the variables and plotted with color-coded
coefficients to enhance the interpretability of the
model [29]. The color-coded correlation coefficients
indicate the significance of the metabolite contribution
in predicting the response. Two parameters, R2Y and
Q2, were used for evaluation of the models. R2Y ex-
plains the latent variables of the sums of squares of all
x and y values. Q2 reflects the cumulative cross-
validated percentage of the total variation that can be
predicted by the current latent variables. High coeffi-
cient values of R2Y and Q2Y (>0.5 is acceptable)
showed good discrimination and predictive ability [8].
In the PLS-DA models, we used permutation tests
(200 times) to observe whether there was overfitting,
while the permutation test was evaluated by using
cross-validation, with R2 and Q2 as correlation coeffi-
cients of the cross-validation. It is generally believed
that the intercept of the Q2 regression line on the y-
axis (permutation plot) being 0 or less than 0 indicates
a reliable and effective model, without overfitting [30].

Potential biomarker selection and metabolic pathway
analysis
On the basis of parameters obtained from the multivariate
analysis, we selected the metabolites whose absolute cor-
relation coefficient values greater than the cut-off value or
variable importance for projection (VIP) (value >1.0 and
P < 0.05) as potential biomarkers for AS [10, 29, 30]. Then,
the related metabolic pathways in which these potential
biomarkers are involved were identified through a Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
retrieval, and the metabolic pathway map was plotted.

Statistical methods
IBM SPSS version 20.0 software (IBM Armonk, NY, USA)
was used for statistical analysis. The mean values for age,
body mass index (BMI), disease duration, Bath Ankylosing
Spondylitis Disease Activity Index score (BASDAI) and
Bath Ankylosing Spondylitis Functional Index score (BASFI)
were reported with their SDs. A P value ≤0.05 was consid-
ered to be statistically significant.

Results
Clinical population
Upon our invitation, 44 patients with AS and 44 healthy
individuals as the control group consented to participate
in the study of plasma and urine samples, and another
30 patients with AS and 30 patients with FNF consented
to participate in the study of tissue samples. All of the
participants met our inclusion or exclusion criteria, and
5 patients with AS (6.3 %) with hypertension, diabetes
mellitus and AS comorbidities (iritis, ulcerative colitis
and otitis media) were excluded. The clinical information
of the patients and control subjects is summarized in
Table 1. As listed in the table, the age, sex and BMI of the
control group basically matched those of the AS group.

1H NMR spectra of samples
Figure 1 shows typical 1H NMR spectra of the plasma
urine and tissue samples taken from randomly selected
participants in the AS and control groups. The urine,
plasma and polar tissue extract samples contained mainly
a series of amino acids, glucose and lipids, while the
non-polar tissue extract samples contained the minimum
metabolites, dominated mainly by triglycerides (TG).

Multivariate data analysis of NMR data
Figure 2 shows the PCA score plots for the three sample
types (urine plasma and tissue). The difference in the
PCA score plots of tissue samples between the AS group
and the control group was the most significant difference.
The PCA score plots of plasma samples revealed incom-
plete but clear discrimination between patients with AS
and healthy control subjects. For the urine samples, the
PCA model was not able to completely distinguish
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between the patients with AS and healthy control sub-
jects. Therefore, we focused mainly on supervised ana-
lysis results for the urine samples
The PLS-DA result is presented in Fig. 3. For these

three types of samples, the score plots highlighted
two clusters corresponding to the AS and control
groups. In the PLS-DA model, the parameters of R2Y
and Q2 were, respectively, 0.894 and 0.832 (plasma),
0.767 and 0.469 (urine), and 0.921 and 0.860 (tissue
extracts). These results revealed the good discrimin-
ation and predictive ability of this model. Although
the Q2 value of urine samples was slightly lower, it

was acceptable considering the many uncontrollable
factors in human studies. Model cross-validation
through permutation tests (200 times) generated inter-
cepts of R2 and Q2 (respectively, 0.599 and −0.029 for
plasma, 0.617 and −0.027 for urine, and 0.385 and
−0.047 for tissue). The low values of the intercepts indi-
cate that the model was not over-fitted.
The OPLS-DA analytical results and the correlation

coefficient loading plots are shown in Fig. 4. The pa-
rameters of R2Y and Q2 were respectively, 0.894 and
0.833 (plasma), 0.767 and 0.422 (urine), and 0.921
and 0.857 (tissue extracts), which also revealed the

Table 1 Participant characteristics at the time of sampling

Characteristics Urine and plasma samples Ligament tissue samples

Patients with AS HC P valuea patients with AS Patients with FNF P valuea

Number of participants 44 44 – 30 30 –

Age, years, mean ± SD 31.8 ± 10.9 33.8 ± 9.7 0.350 40.6 ± 12.8 46.6 ± 11.6 0.065

Range 18–59 18–57 – 20–71 31–72 –

18–29 15 12 – 6 2 –

30–49 21 22 – 14 13 –

50–79 8 10 – 10 15 –

Sex, n (%) 1.000 0.037

Female 6 (13.6 %) 6 (13.6 %) – 4 (13.3 %) 11 (36.7 %) –

Male 38 (86.4 %) 38 (86.4 %) – 26 (86.7 %) 19 (63.3 %) –

BMI, kg/m2, mean ± SD 21.8 ± 2.4 22.5 ± 2.9 0.226 22.8 ± 2.0 23.7 ± 1.5 0.062

<18.5 13 12 – 9 7 –

18.5–25 25 23 – 14 15 –

>25 6 9 – 7 8 –

Disease duration, years, mean ± SD 6.8 ± 3.5 – – 14.2 ± 4.8 – –

<5 25 – – 0 – –

5–10 18 – – 11 – –

>10 1 – – 19 – –

BASDAI score 3.2 ± 1.8 – – 5.8 ± 1.1 – –

0–3 20 – – 0 – –

3–6 23 – – 18 – –

6–10 1 – – 12 – –

BASFI score 3.9 ± 2.1 – – 5.5 ± 0.9 – –

0–3 20 – – 0 – –

3–6 22 – – 19 – –

6–10 2 – – 11 – –

Treatment duration, years, mean ± SD 2.8 ± 1.5 – – 8.4 ± 3.6 – –

0 32 – – 0 – –

1–10 11 – – 19 – –

11–20 1 – – 9 – –

>20 0 – – 2 – –

Abbreviations: AS Ankylosing spondylitis, FNF Femoral neck fractures, BMI Body mass index, BASDAI Bath Ankylosing Spondylitis Disease Activity Index, BASFI Bath
Ankylosing Spondylitis Functional Index, HC Healthy control subjects
aCalculated using Student’s t test for continuous variables and chi-square test for categorical variables between patients with AS and healthy control subjects
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good discrimination and predictive ability of this
model. In addition, based on our results from the
correlation coefficient loading plots, correlation coeffi-
cient cut-off values for potential markers of plasma,
urine and tissue samples were set at 0.294, 0.294 and
0.355, respectively.

Potential biomarkers and pathway analysis
On the basis of correlation coefficients, VIP values and P
values of the metabolites obtained from the multivariate
analysis, we selected 20 metabolites from plasma (n = 13),
urine (n = 7) and tissue (n = 2) as potential biomarkers for
AS (Table 2). The box-and-whisker plots of these potential

Fig. 1 Representative 600-MHz 1H NMR spectra of (a) plasma, (b) urine and (c) polar tissue extract and (d) non-polar extract metabolites obtained from
the AS group (upper layer) and control subjects (lower layer). Phe Phenylalanine, His Histidine, Glu Glutamate, Ace Acetate, Lys Lysine, Ala Alanine, Val Valine,
Leu Leucine, Ile Isoleucine, Tyr Tyrosine, Met Methionine, Gln Glutamine, PC Phosphorylcholine, GPC Glycerophosphocholine, OAG O-acetyl glycoprotein,
Lac Lactate, Pyr Pyruvate, Citr Citrate, Gly Glycine, 4-CG 4-Cresol glucuronide, GL Glyceryl of lipids, 3-HB 3-Hydroxybutyrate, NAG N-acetyl glycoprotein,
NMR Nuclear magnetic resonance, TG triglycerides, PAG phenylacetylglycine, 2-PY 2-Pyridone-3-carboxamide, L1:CH3(CH2)n., L2 CH3CH2CH2C=,
L3 -(CH2)n-, L4 CH2CH2CO, L5 -CH2C = C-, L6 CH2CO, L7 C = CCH2C = C, L8 -CH-, EDTA Ethylenediaminetetraacetic acid, AS Ankylosing spondylitis

Fig. 2 Principal component analysis (PCA) score plots based on the 1H NMR spectra of (a) plasma, (b) urine and (c) tissue metabolites obtained
from the ankylosing spondylitis patients (AS, red circles) and healthy controls (HC, black squares). PC1 and PC2 explained (A-plasma) 34.5 % and
13.6 %, (B-urine) 31.5 % and 13.4 %, (C-tissue)48.2 % and 22.7 % of the variables, respectively

Wang et al. Arthritis Research & Therapy  (2016) 18:244 Page 6 of 13



biomarkers also suggested the presence of significant in-
tergroup differences (Fig. 5). On this basis, by KEGG path-
way database retrieval, we found that these metabolites
were associated mainly with metabolic pathways such as
fat metabolism, intestinal microbial metabolism, glucose
metabolism and choline metabolism, as well as probably
with immune regulation. Finally, we combined these
results to draw a metabolic pathway map (Fig. 6) to show
a more intuitive correlation between these metabolites.

Discussion
The diagnosis of AS is not prompt owing to the lack of
effective diagnostic biomarkers. With effective and
potentially disease-modifying treatments such as TNF
inhibitors becoming widely available [31], the diagnostic
delay becomes the critical rate-limiting factor for the
mobility and quality of life of patients with AS. As an

effective tool, metabolomics has been playing a great
role in studies aimed at finding diagnostic biomarkers
for various types of cancer [32]. In recent years, few
studies have been reported on the metabolomics of AS
[1, 2, 16], and the common point is that MS and only
plasma samples are used in these studies. In the present
study, for the first time to our knowledge, we used NMR
along with plasma, urine and ligament tissues as samples
in metabolomic investigations in an effort to define more
meaningful potential diagnostic biomarkers for AS.
All metabolites with significant changes could be can-

didates for AS biomarkers (i.e. potential biomarkers).
Nevertheless, no single biomarker can characterize AS,
and fluctuating metabolic changes in amino acids are
not specific biomarkers of any disease [29]. Thus, a
panel of markers rather than a single compound may be
promising tools for making an accurate diagnosis of AS

Fig. 3 Partial least squares discriminant analysis (PLS-DA) score plots (left panel) and statistical validation of the corresponding PLS-DA model by
permutation analysis (right panel) based on the 1H nuclear magnetic resonance spectra of (a) plasma, (b) urine and (c) tissue metabolites obtained
from the patients with ankylosing spondylitis (red circles) and from the healthy control subjects and patients with femoral neck fracture (black squares).
Principal component 1 (PC1) and PC2 explained (a) 42.1 % and 16.0 %, (b) 39.4 % and 11.3 %, and (c) 51.6 % and 18.7 % of the variables, respectively
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[12]. On the basis of these detection methods and multi-
variate data analysis, we selected 20 different metabolites
as potential biomarkers for AS.
The TG content was significantly decreased in the

plasma of patients with AS while its metabolite level in
plasma (glycerol) was significantly increased. More im-
portantly, three metabolites of the β-oxidation of its
downstream fatty acids—namely, acetoacetate, acetone
and 3-hydroxybutyrate (3-HB)—were significantly in-
creased in the plasma of patients with AS. In addition,
two branched-chain amino acids (leucine and valine)
were decreased in AS plasma. Branched-chain amino
acids have long been thought to be closely related to fat
metabolism, especially for leucine. It has been confirmed
in relevant reports that lack of leucine can promote the
metabolism of peripheral fats and energy [33]. Addition-
ally, 2-pyridone-3-carboxamide (2-PY) is increased in
AS urine, which is reported to be related to fat metabol-
ism as well [34]. All of the above results suggest that the
fat metabolic pathways may be active in AS. In addition,

we have also reported in previous studies that the
expression levels of some β-oxidation-related enzymes
were up-regulated in AS, that is the active status of fat
metabolism may be related to the pathogenesis of AS
[23]. Moreover, Ottaviani et al. reported that BMI tends
to increase during the course of AS treatment [35], im-
plying that BMI values are partly related to the severity
of AS. Syrbe et al. also reported that the serum levels of
some adipokines (resistin and visfatin) were up-regulated
in patients with AS, while serum resistin levels are related
to markers of inflammation [36]. Gao et al. found that
plasma levels of glycerol were increased in AS. Similarly,
they suggested that the increased glycerol levels may result
from the large in vivo fat consumption in patients with AS
[8]. Therefore, we concluded that the fat metabolism in
AS may be very active and that TG, glycerol, acetoacetate,
acetone, 3-HB, leucine, valine and 2-PY are the key me-
tabolites reflecting these abnormalities. It is worth not-
ing that TG content in the AS ligament tissue increased
dramatically instead (Fig. 5). We think this may be an

Fig. 4 Orthogonal projection to latent structures discriminant analysis score plots (left panel) and the corresponding coefficient loading plots
(right panel) based on the 1H nuclear magnetic resonance spectra of (a) plasma, (b) urine and (c) tissue metabolites obtained from the patients
with ankylosing spondylitis (red circles) and from the healthy control subjects and patients with femoral neck fracture (black squares). 2-PY 2-
Pyridone-3-carboxamide, 4-CG 4-Cresol glucuronide, Ace Acetate, Ala Alanine, Crea Creatinine, GL Glycerol of lipids, Gln Glutamine, Glu Glutamate,
Gly Glycine, GPC Glycerophosphocholine, His Histidine, Ile Isoleucine, L1 CH3(CH2)n., L2 CH3CH2CH2C=, L3 -(CH2)n-, L4 CH2CH2CO, L5 -CH2C = C-, L6
CH2CO, L7 C = CCH2C = C, L8 -CH = CH-, Lac Lactate, Leu Leucine, Lys Lysine, Met Methionine, NAG N-acetyl glycoprotein, PAG Phenylacetylglycine,
Phe Phenylalanine, Pyr Pyruvate, Tyr Tyrosine, Val Valine
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ectopic fat deposition phenomenon. It has been found in
some studies that patients with fat deposition in local
tissue often also have an increased level of inflammatory
cytokines (such as TNF-α and interleukin 6) [37, 38],
which is consistent with the chronic inflammatory envir-
onment in patients with AS.
IBD has been considered one of the most extra-

articular symptoms of AS [39] and the pathogenesis of
IBD is closely related to intestinal microorganisms [40].
Four of the potential biomarkers we detected are closely
related to intestinal microbial metabolism. The levels of
glycine and hippurate were significantly increased in AS
urine. Hippurate is produced in the gut by microorgan-
isms using glycine and benzoic acid as building blocks
[41]. It is normally found in urine, and an increased level
of hippurate indicates disorder of the gut microbiota
[42]. In addition, an increased hippurate level in the
urine has been associated with leanness [43], which is

also consistent with our results related to abnormal fat
metabolism. Phenylacetylglycine (PAG) and butyrate are
also decreased in AS urine. Butyrate has been considered
to regulate the intestinal flora balance, and the addition
of low doses of butyrate to the diet has a certain thera-
peutic effect on ulcerative colitis [44]. On one hand, a
decreased level of PAG in the urine may also be associ-
ated with intestinal flora metabolism disorder [45]. On
the other hand, previous studies have found that
sulphate-reducing bacteria were increased in the faeces
of patients with AS, and such bacteria were suggested to
be correlated with the pathogenic mechanism of IBD
[46]. In addition, some authors believe that the intestinal
microbial composition in patients with AS is changed
compared with that in healthy individuals [47, 48], and
Dialister has been suggested as the potential marker of
AS [48]. Therefore, the evidence described above sug-
gests that the changes of butyrate, hippurate, glycine

Table 2 Summary of potential biomarkers of ankylosing spondylitis by plasma, urine and tissue metabolomic analysis

Metabolite Sample type Statusa Chemical shift Correlation coefficient
(AS vs HC)b

VIP valueb FCc P valued

Leucine Plasma ↓ 0.96 (d), 0.97 (d), 1.72 (m), 1.72 (m), 3.73 (t) −0.452 0.698 0.932 0.045

Valine Plasma ↓ 1.00 (d), 1.05 (d), 2.28 (m), 3.62 (d) −0.302 1.090 0.86 <0.001

3-HB Plasma ↑ 1.20 (d), 2.32 (dd), 2.42 (dd), 4.16 (m) 0.422 1.328 1.254 <0.001

Alanine Plasma ↓ 1.48 (d), 3.77 (q) −0.332 1.664 0.770 <0.001

NAG Plasma ↑ 2.05 (s) 0.570 0.065 1.207 <0.001

Methionine Plasma ↑ 2.14 (s), 2.16 (m), 2.65 (t), 3.87 (t) 0.597 1.701 1.325 <0.001

TG
(L1, L2, L3, L5, L7, L8)

Plasma ↓ 0.86 (t), 0.88 (t), 1.27 (m), 2.01 (m),
2.76 (m), 5.30 (m)

−0.400 0.977 0.814–1.077 <0.05

Acetone Plasma ↑ 2.23 (s) 0.298 1.358 1.415 <0.001

Acetoacetate Plasma ↑ 2.29 (s) 2.294 0.884 1.249 <0.001

Betaine Plasma ↑ 3.26 (s), 3.91 (s) 0.334 0.287 1.038 0.030

Glycerol Plasma ↑ 3.65 (dd), 3.56 (dd), 3.77 (m) 0.328 1.400 1.207 <0.001

Glucose Plasma ↓ 3.42 (dd), 3.54 (dd), 3.71 (dd), 3.78 (m),
3.84 (m), 5.26 (d)

−0.317 0.559 0.909 0.013

Glutamate Plasma ↓ 2.07 (m), 2.35 (m), 3.75 (m) −0.374 1.300 0.789 <0.001

Butyrate Urine ↓ 0.90 (t), 1.56 (m), 2.16 (t) −0.447 1.533 0.896 0.003

Creatinine Urine ↓ 3.04 (s), 3.93 (s) −0.331 1.330 0.814 0.018

Glycine Urine ↑ 3.56 (s) 3.392 1.088 1.298 0.009

Hippurate Urine ↑ 7.84 (d), 7.64 (t), 7.56 (dd) 0.421 0.772 1.320 0.017

PAG Urine ↓ 8.03 (d), 7.36 (m), 7.37 (m), 7.43 (m) −0.306 1.213 0.895 0.028

Glutamate Urine ↓ 2.07 (m), 2.35 (m), 3.75 (m) −0.429 1.541 0.919 0.002

2-PY Urine ↑ 7.83 (dd), 8.55 (d) 0.461 0.700 1.182 0.049

TG
(L2, L3, L5, L6, L7, L8)

Tissue ↑ 0.88 (t), 1.27 (m), 2.01 (m), 2.30 (m),
2.76 (m), 5.33 (m)

0.946 1.060 2.490–7.039 <0.001

Choline Tissue ↓ 4.14 (m), 4.29 (m), 5.26 (m) −0.680 0.718 0.242 <0.001

Abbreviations: AS Ankylosing spondylitis, VIP Variable importance for projection, FC Fold change, 3-HB 3-Hydroxybutyrate, NAG N-acetyl glycoprotein, TG Triglycerides,
PAG Phenylacetylglycine, 2-PY 2-Pyridone-3-carboxamide, L1 CH3(CH2)n., L2 CH3CH2CH2C=, L3 -(CH2)n-, L5 -CH2C = C-, L6 CH2CO, L7 C = CCH2C = C, L8 -CH = CH-
aRelative concentrations compared with healthy control subjects: ↑ = up-regulated; ↓ = down-regulated
bCorrelation coefficient and VIP value were obtained from orthogonal projection to latent structures discriminant analysis
cFold change between patients with AS and healthy control subjects
dP value determined using Student’s t test
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Fig. 5 Box-and-whisker plots showing the relative levels of selected potential biomarkers for AS in (a) plasma, b) urine and c) tissue. Horizontal
line in the middle portion of the boxes represents the median; bottom and top boundaries of boxes represent the lower and upper quartiles,
respectively; and whiskers represent the 5th and 95th percentiles. AS Ankylosing spondylitis, HC Healthy control subjects, FNF Femoral neck
fracture, 2-PY 2-Pyridone-3-carboxamide, L2 CH3CH2CH2C=, L3 -(CH2)n-, L5 -CH2C = C-, L6 CH2CO, L7 C = CCH2C = C, L8 -CH = CH-
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and PAG levels in the urine may indicate that they are
the key metabolites of the abnormal intestinal microbial
metabolism in AS.
In our previous research we reported that insulin re-

ceptor (INSR) may be a key upstream protein that leads
to an unusually active fat metabolism [12] and that
over-expressed INSR can enhance the action of insulin
and disrupt glucose metabolism. In this study, plasma
glucose was decreased, which might be a result of the
over-expression of INSR. In addition, as two important
precursors of gluconeogenesis, alanine and glutamate
were significantly decreased in AS plasma (glutamate
was reduced in urine, too), which may also be the reason
for the decline in the glucose concentration.
We also found abnormal choline metabolism in AS.

Choline was decreased significantly in the ligaments of
patients with AS. Choline has an affinity for fat and can
promote the transport of fat out of the liver in the form
of phospholipids through the blood or it can improve
the use of fatty acids themselves in the liver to prevent
the abnormal deposition of fat in some organs or tissues
[49]. Therefore, the ectopic fat deposition phenomenon

in the ligament may be related to the significant decrease
in choline. Furthermore, as a precursor of choline, the
urinary creatinine level in patients with AS was decreased.
A decreased level of urinary creatinine is commonly found
in chronic kidney disease, and AS is occasionally compli-
cated with renal disease [50]. Therefore, the decreased
urinary creatinine may be a manifestation of AS com-
plicated with extra-articular symptoms.
AS is a typical autoimmune disease and its pathogenesis

is closely related to immune system disorder. We found
that plasma levels of betaine, methionine and N-acetyl
glycoprotein (NAG) were noticeably increased. Methionine
is a precursor of methionine enkephalin (MENK), and the
latter is involved in the regulation of immune response in
addition to affecting cell proliferation. Effects of MENK on
the immune system are observed mainly in immune stimu-
lation at lower concentrations [51]. Thus, an elevated
plasma level of methionine may reflect reduced synthesis of
MENK, which further results in an aggressive autoimmune
reaction leading to AS. Because betaine is a precursor of
methionine [52], the elevation of both betaine and methio-
nine in AS may be inter-related, and plasma NAG elevation

Fig. 6 Altered metabolic pathways for the most relevant distinguishing metabolites (potential biomarkers) between the patients with AS and the
healthy control subjects and patients with femoral neck fracture. Green boxes indicate metabolites that were up-regulated in AS, while red boxes
indicate metabolites that were down-regulated. AS Ankylosing spondylitis, 3-HB 3-Hydroxybutyrate, NAG N-acetyl glycoprotein, TG Triglycerides,
PAG Phenylacetylglycine, CoA Coenzyme A, TCA Tricarboxylic acid
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may also suggest an immune system disorder in AS be-
cause NAG can acetylate glycoproteins, which are import-
ant for white blood cell recognition [53].
In general, the metabolomic profiles we have obtained

are promising. With good discrimination and predictive
ability in multivariate analysis models, the profiles could
aid in making decisions on a more invasive diagnostic
procedure. However, some limitations of this research
need to be noted. First, the sample was limited in size,
and the results should be validated with a larger number
of patients with AS in the future. Second, the disease
activity in patients with AS was not evaluated, and
further work is required to address the relationship be-
tween potential biomarkers and disease activity. Third,
some comorbidities of AS may affect the patient’s own
metabolic status, although we excluded this category of
patients in advance. However, considering the possible
existence of bias, we still need to pay attention to this
problem when interpreting the results. Fourth, the
medication history of the patients, which may also
influence the results of metabolic profiling, was not
interpreted in our results.

Conclusions
In this study, NMR along with three sample types—urine,
plasma and ligament tissue—were used for the first time in
a metabolomic study of AS to obtain more comprehensive
metabolomic profiles and later select potential biomarkers
that may help decrease the delay in the diagnosis of AS.
Disorders of four metabolic pathways as well as immune
function may exist in patients with AS, and 20 differential
metabolites that play critical roles in these metabolic path-
ways or physiological functions can be considered as poten-
tial biomarkers for AS. Further validation studies are
needed to confirm these results before this method can be
transferred from bench to bedside.
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