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Abstract

Background: Despite the important role that microRNAs (miRNAs) play in immunity and inflammation, their
involvement in systemic sclerosis (SSc) remains poorly characterized. miRNA-155 (miR-155) plays a role in pulmonary
fibrosis and its expression can be induced with interleukin (IL)-13. SSc fibroblasts have activated inflammasomes
that are integrally involved in mediating the myofibroblast phenotype. In light of this, we investigated whether
miR-155 played a role in SSc and if its expression was dependent on inflammasome activation.

Methods: miR-155 expression was confirmed in SSc dermal and lung fibroblasts by quantitative polymerase chain
reaction (PCR). Wild-type and NLRP3-deficient murine fibroblasts were utilized to explore the regulation of miR-155
during inflammasome activation. miR-155-deficient fibroblasts and retroviral transductions with a miR-155
expression or control vectors were used to understand the contribution of miR-155 in fibrosis.

Results: miR-155 was significantly increased and the highest expressing miRNA in SSc lung fibroblasts. Its
expression was dependent on inflammasome activation as miR-155 expression could be blocked when
inflammasome signaling was inhibited. In the absence of miR-155, inflammasome-mediated collagen synthesis
could not be induced but was restored when miR-155 was expressed in miR-155-deficient fibroblasts.

Conclusions: miR-155 is upregulated in SSc. These results suggest that the inflammasome promotes the expression
of miR-155 and that miR-155 is a critical miRNA that drives fibrosis.
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Background

Systemic sclerosis (SSc) is a chronic autoimmune disease.
It is characterized by uncontrolled fibrosis that is directly
related to the morbidity and mortality of the disease [1].
Fibrotic lesions in SSc have persistently activated myofi-
broblasts and these cells mediate the excessive deposition
of collagen in the dermis and visceral organs and display
vascular abnormalities [2—4]. Patients typically present
with an autoantibody profile that often defines disease
progression and organ involvement [5, 6]. We recently
found that activation of the inflammasome orchestrates
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the increased collagen synthesis in SSc fibroblasts [7]. We
also found that inhibition of inflammasome signaling sig-
nificantly abrogated the myofibroblast phenotype [7].
Based on these findings, we concluded that inflammasome
activation plays a significant role in the pathogenesis of
SSc fibrosis.

MicroRNAs (miRNAs) have been shown to regulate
gene expression and specific miRNAs have been
reported to be involved in SSc fibrosis [8—10]; however,
little is known about the regulation of specific miRNAs
during fibrosis. miRNA-155 (miR-155) has been identi-
fied as having immune regulatory functions and plays a
critical role in innate and adaptive immune responses
[11-14]. Increased miR-155 has been associated with
liver [15] and lung fibrosis [16] and an additional study
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has shown that the downregulation of miR-155 at
wound sites abrogates fibrosis [17]. miR-155 can be in-
duced by interleukin (IL)-1f [18] and transforming
growth factor (TGF)-P1 [19]. In light of the observation
that IL-1p induces miR-155 and because we found that
IL-1P processing by the inflammasome is elevated in SSc
fibroblasts [7], we investigated whether miR-155 was
overexpressed in SSc cells and whether its expression re-
quires activation of the inflammasome. In some of these
studies, bleomycin was used to activate the inflamma-
some and induce IL-1 processing and secretion and we
used this molecule to further explore the contribution of
the inflammasome activation to miR-155 expression in
fibrosis. The results of these studies demonstrate that
SSc fibroblasts have increased synthesis of miR-155, and
that miR-155 expression is dependent on inflammasome
activation. Importantly, miR-155 is required for collagen
production following inflammasome activation as cells
devoid of miR-155 cannot produce collagen in a fibrotic
setting. This suggests that miRNAs are involved in the
pathogenesis of SSc and, in particular, miR-155 may be
an essential regulator of SSc fibrosis downstream of
inflammasome activation.

Methods

Human subjects

Primary fibroblast strains were derived from SSc lung (12 =9)
and normal lung (n =5) explants. The lung fibroblasts lines
were derived from Caucasian SSc patients aged 4652 years
(eight female, one male) with nonspecific interstitial pneu-
monia, that is usual interstitial pneumonia with or without
pulmonary arterial hypertension. Control lung fibroblast
lines were established from Caucasian normal individuals
(three female, two male) aged 25-76 years who had all died
due to head trauma. SSc skin-derived fibroblasts (1 = 5) were
established from Caucasian SSc patients with diffuse disease
aged 40-50 years (four female, one male), with Scl-70 or
RNA polymerase autoantibodies. Normal dermal fibroblasts
(n = 6) were obtained from Coriell Repositories, Camden, NJ,
USA (n=4) or obtained from Pittsburgh (n=2) and were
derived from Caucasian and one Black individual aged
16-80 years of age. All of the SSc patients fulfilled
the preliminary criteria for the classification of SSc
[20, 21]. All human-derived fibroblasts were tested
between passages 3 and 6.

Cell culture

Normal human primary dermal fibroblasts (n=4) and
SSc primary dermal fibroblasts (# =5) or normal human
primary lung fibroblasts (n=3) and SSc primary lung
fibroblasts (z =3) (750,000 cells/dish) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Mediatech
Inc., Manassas, VA, USA) supplemented with 10% fetal
bovine serum (FBS; Mediatech) and 1% penicillin/
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streptomycin (Mediatech). In the additional experiments,
SSc fibroblasts were exposed to 20 pM caspase-1 inhibitor
(Z-YVAD(OMe)-FMK (YVAD); Enzo Life Sciences,
Plymouth Meeting, PA, USA) for 48 h. RNA was isolated
using the Qiagen miRNeasy kit and the culture media was
reserved for hydroxyproline assays according to Artlett et
al. [7].

Fibroblasts cell lines from murine skin explants were
established from NLRP3-deficient mice, miR-155-
deficient mice, and wild-type C57BL/6 mice as previ-
ously described [7]. All fibroblasts derived from the
knockout mice were on a C57BL/6 background. miR-
155-deficient mice were a kind gift from Dr. Martin
Turner (Babraham Institute, UK).

miR-155 expression

miR-155 expression was measured by quantitative real-
time polymerase chain reaction (RT-PCR) normalized to
SNORD44 for human fibroblasts or SNORD47 for
mouse fibroblasts using primers purchased from Quanta
Biosciences, Gaithersburg, MD, USA. Total miRNA was
reverse transcribed with qScript miRNA c¢DNA reaction
kit (Quanta Biosciences) and quantified with PerfectCT
SYBR Green Supermix (Quanta Biosciences) according
to the manufacturer’s instructions.

Fibroblast transduction

Retroviruses were produced in the Platinum-E cell line
(Cell Biolabs). The miR-155-expressing MigR1-miR-155-
gfp retrovirus was provided by E. Vigorito (Babraham
Institute, UK). A MigR1-control-gfp retrovirus that
expressed scrambled miR-155 sequence was used as the
control. miR-155-deficient cells were transduced as pre-
viously described [14] but modified for fibroblasts.
Briefly, fibroblasts at 50% confluency were treated with 8
pg/ml polybrene and retrovirus, centrifuged at 2000 g
for 90 min, incubated at 37°C for 4 h, and then fresh
media was added. Some of the dishes received 10 uM
bleomycin or 50 ng/ml IL-1 receptor antagonist
(IL-1RA) at 0 and 24 h post-transduction, and were then
recovered for hydroxyproline analyses. Transduction
efficiency of both retroviral constructs was determined
by green fluorescent protein (GFP) expression to be
approximately 10% using flow cytometry.

Western blotting

Fibroblasts (C57BL/6 and miR-155K0O) were cultured as
described with or without 10 uM bleomycin; 200 pg of
whole cell lysate was size fractionated on an 8% SDS
polyacrylamide gel and the proteins transferred to a
PVDF membrane (ThermoFisher Scientific, Waltham,
MA, USA). Nonspecific binding sites were blocked with
5% skim milk and then probed with rabbit-anti-mouse
TGEF-B1 or P-actin (Santa Cruz Biotechnologies, Santa
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Cruz, CA, USA) overnight at 4°C. The membrane was
washed and incubated with goat-anti-rabbit-HRP
(Jackson Immunoresearch, West Grove, PA, USA). The
horseradish peroxidase (HRP) signal was developed with
SuperSignal Chemiluminescent Substrate (ThermoFisher
Scientific). Band densities were quantified using
ImageQuant LAS4000. TGF-B1 bands were normalized
to the B-actin levels.

Statistical analyses

The Mann Whitney ¢ test or Wilcoxon matched-pairs
signed-rank test were used to analyze the data by
GraphPad Prism 7. A p value <0.05 was considered
significant.

Results

miRNA-155 is overexpressed in SSc dermal and lung
fibroblasts

miR-155 has been reported to be elevated in fibrosis and
we wanted to determine whether this was a relevant
miRNA for SSc. We found the relative expression of
miR-155 in SSc lung fibroblasts (n =9) to be 3.65-times
more than that of normal lung fibroblasts (z =5) (p < 0.01;
Fig. 1a). We also found that SSc dermal fibroblasts (n = 5)
had twice the relative expression of miR-155 than normal
dermal fibroblasts (# = 6) (p = 0.04; Fig. 1b). These findings
suggest that the increased miR-155 expression in fibro-
blasts may be contributing to fibrosis.

miRNA-155 is induced by inflammasome activation

We have previously shown that SSc fibroblasts have an
activated inflammasome [7] and it has been reported
that miR-155 expression can be induced by IL-1f [18].
We therefore wanted to determine whether inflamma-
some activation could be inducing miR-155. SSc fibro-
blasts (7 =7) were cultured with the inflammasome
inhibitor YVAD for 48 h. We found that in the presence
of the caspase-1 inhibitor miR-155 was significantly re-
duced (p=0.03; Fig. 2a). Further confirming our
previous findings, total collagen synthesis was also sig-
nificantly reduced when caspase-1 was inhibited with
YVAD (p <0.01; Fig. 2b). These data suggest that miR-
155 expression is dependent on caspase-1 activation and
that miR-155 upregulation could correlate with collagen
production in SSc.

In addition, because we found the NLRP3 inflamma-
some to be integral in SSc fibrosis [7], we explored
whether NLRP3-deficient fibroblasts (NLRP3KO) could
express miR-155. B6 and NLRP3KO fibroblasts were
cultured with bleomycin + YVAD, and miR-155 expres-
sion was measured. In the wild-type B6 fibroblasts, the
relative expression of miR-155 was induced with bleo-
mycin (p =0.01; Fig. 2c) and the induced expression of
miR-155 could be abolished with YVAD (p=0.02;
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Fig. 1 miR-155 has increased expression in systemic sclerosis (SS¢) lung
and dermal fibroblasts. a Lung fibroblasts (0 =9 SS¢; n =5 control) and b
dermal fibroblasts (n=5 SSc; n =6 control) were assayed for miR-155
levels as described in the methods. miR-155 levels were normalized to
SNORDA44. Statistical analyses was by Mann-Whitney t test

Fig. 2c). Furthermore, miR-155 was not expressed in
NLRP3KO fibroblasts (p =0.01; Fig. 2c) and could not
be induced at all with bleomycin (p=0.01; Fig. 2c).
Correspondingly, we then examined hydroxyproline
levels and found that bleomycin induced collagen (p <
0.01; Fig. 2d) and YVAD blocked this process (p < 0.01;
Fig. 2d). These data suggest that the NLRP3 inflamma-
some and caspase-1 may play a role in miR-155 expres-
sion in fibroblasts.

miRNA-155 is required for inflammasome-driven collagen
synthesis

Having established that both miR-155 expression and
collagen production by fibroblasts were upregulated by
inflammasome activation, it was important to determine
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Fig. 2 miR-155 expression requires the NLRP3 inflammasome. a Systemic sclerosis (SS¢) lung fibroblasts (n = 7) were treated with 20 uM YVAD for
48 h. miRNA was extracted and the resulting cDNA was assayed for miR-155 levels normalized to SNORD44. b Hydroxyproline was measured in
the culture supernatants from a. Statistical analyses for a and b used the Wilcoxon ranked paired t test. ¢ In mouse cells, miR-155 expression was
induced with 20 uM bleomycin (Bleo) + 20 uM YVAD for 48 h and analyzed for miR-155 expression normalized to SNORD47. Data are presented
as the average from two independent experiments with three replicates (n =6 for each condition) + SEM. d Hydroxyproline was measured from
the culture supernatants from c. Statistical analyses for ¢ and d used the Mann-Whitney t test

whether miR-155 expression was required for collagen
production during fibrosis. To address this, we first
tested whether miR-155KO fibroblasts responded to
bleomycin. We found that, unlike the B6 fibroblasts
responding to bleomycin (p <0.01; Fig. 3a), bleomycin
did not induce collagen synthesis in the miR-155KO
fibroblasts (p < 0.001; Fig. 3a).

To directly confirm this observation and to prove that
miR-155 facilitates fibrosis, we transduced miR-155KO
fibroblasts with a miR-155 retroviral expression vector

or the retroviral control vector and then stimulated the
fibroblasts with bleomycin. When cells were transduced
with the control vector, collagen synthesis could not be
induced with bleomycin (Fig. 3b). However, after res-
toration of miR-155 in the miR-155KO fibroblasts,
there was a significant induction of total collagen,
even without bleomycin stimulation (p =0.03; Fig. 3b)
and this effect was further enhanced with bleomycin
(p <0.001; Fig. 3b). These data indicate that miR-155
is required for fibrosis.
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Fig. 3 Collagen synthesis mediated by the inflammasome requires miR-155.
a Hydroxyproline levels were measured in the culture media from B6
fibroblasts and miR-155-deficient fibroblasts (miR-155KO) + 10 uM
bleomycin (Bleo) after 48 h. b Culture media hydroxyproline
levels from miR-155KO fibroblasts transduced with the control
(Ctl) vector or the miR-155 expressing vector+ 10 uM Bleo after
48 h. Data for both a and b are presented as the average from two
independent experiments with three replicates (n = 6 for each condition)
+ SEM using the Mann-Whitney t test. ns Not significant

miRNA-155 modulates fibrosis via IL-1 signaling

We found increased hydroxyproline when miR-155 was
overexpressed in fibroblasts; however, only 10% of the
fibroblasts were transduced by the miR-155 retrovirus
(data not shown). This suggested that there might be an
indirect mechanism driving the miR-155-mediated
fibrotic response. IL-1 has been reported to promote miR-
155 expression, and so we questioned whether miR-155
could promote IL-1 transcription that synergizes with the
activation of the inflammasome; we therefore blocked the
IL-1 receptor with its antagonist (IL-1RA). In repeat ex-
periments, in the absence of miR-155, IL-1RA had no ef-
fect on hydroxyproline levels (Fig. 4a); however, in the
presence of miR-155, IL-1RA completely abrogated
bleomycin-induced hydroxyproline (p <0.01; Fig. 4a). In
addition, the spike in the level of hydroxyproline that was
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observed when miR-155KO fibroblasts were transduced
with the miR-155 vector (without bleomycin stimulation)
was also via a mechanism that entailed IL-1, as this spike
was abolished with IL-1RA (p < 0.01; Fig. 4a).

Confirming the data by Pottier et al. [18], we found that
the addition of IL-1 to fibroblasts induced miR-155 in a
dose-dependent manner (Fig. 4b). However, we found this
expression was not transient in fibroblasts and that miR-
155 expression was still elevated at 48 h at the time point
when total miRNA was isolated for the other experiments.
Taken together, these data suggest that in fibroblasts
activation of the inflammasome is involved in IL-1-mediated
expression of miR-155 and that miR-155 synergizes with the
inflammasome to drive collagen synthesis during fibrosis.
Furthermore, these data also imply that miR-155 provides a
feed-forward mechanism promoting IL-1 transcription that
can lead to upregulated collagen synthesis via IL-1 receptor
signaling and further miR-155 expression.

We also found that miR-155 was necessary for increased
TGF-P1 protein levels. We stimulated C57BL/6 and the
miR-155KO fibroblasts with bleomycin and measured
TGEF-B 1 protein levels in fibroblasts. We found that there
was a significant induction of TGF-P1 in the B6 fibroblasts;
however in the miR-155KO TGF-B1 could not be induced.
This suggests that miR-155 is driving TGF-P1 expression
and contributing to the fibrotic pathology in these cells.

Discussion
miR-155 has been studied previously in other fibrotic
conditions; however, little is known about its regulation in
SSc fibrosis. Pottier et al. [18] reported that miR-155-
overexpressing fibroblasts had increased motility on
collagen gels suggesting that this miRNA could help to me-
diate wound closure, whereas the knockdown of miR-155
during wound healing abrogated fibrosis. A recently pub-
lished study reports on the role of miR-155 in SSc fibrosis
[22]; however, this study did not explore what caused the
increase in miR-155 in SSc fibroblasts but investigated the
downstream responses mediated by miR-155. Yan et al.
[22] found that miR-155 regulated the Akt and Wnt/[3-ca-
tenin pathways. Our study further confirms and helps to
define the crucial role of miR-155 in SSc fibrosis.

miR-155 expression is upregulated by IL-1 and we
explored this observation in light of our recent finding
that IL-1 and the inflammasome plays a significant role
in SSc fibrosis [7]. We found that miR-155 expression in
SSc fibroblasts is driven by inflammasome activation
since inhibition of the inflammasome signaling cascade
with a caspase antagonist abolished miR-155 expression
and, in turn, significantly lowered collagen (Fig. 2). Our
previous study used bleomycin to activate the inflamma-
some and upregulate collagen via IL-1 expression [7];
therefore, in these studies, we used bleomycin to activate
the inflammasome and to determine the role of the
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Fig. 4 miR-155 regulates fibrosis via interleukin-1 (/-7) and IL-1 induces miR-155. @ miR-155KO fibroblasts were transduced with the miR-155 expression vector
or the control (Ctl) vector. Some of the dishes received 10 uM bleomycin (Bleo) at 0 h and some of the cells also received 50 ng/ml IL-1 receptor antagonist
(I-TRA) at 0 and 24 h. Media was recovered after 48 h and hydroxyproline was measured (n = 9 replicates). b Dose-dependent induction of miR-155 in
fibroblasts (n= 7 replicates). ¢ Graphical representation of transforming growth factor beta (TGF-8) levels in miR-155KO and B6 cells + bleo. d Representative
Westermn blot (one of three samples independently tested). Data are presented as averages + SEM using the Mann-Whitney t test. ns Not significant

NLRP3 inflammasome in miR-155 expression. Thus, to fur-
ther confirm the role of the inflammasome in miR-155 ex-
pression, we show for the first time that NLRP3KO
fibroblasts cannot induce miR-155 expression when stimu-
lated with bleomycin (Fig. 2c). Taken together, this suggests
that the NLRP3 inflammasome is required for miR-155
expression. We next asked whether miR-155 participates in
fibrosis and found that bleomycin cannot induce collagen
synthesis in the miR-155KO fibroblasts (Fig. 3a), whereas
the restoration of miR-155 using a viral vector resulted in
increased collagen (Fig. 3b). IL-1 was found to induce miR-
155 expression (Fig. 4b) and the synthesis of collagen in
miR-155-sufficient fibroblasts, and that this was mediated
via IL-1 since IL-1RA abolished these findings (Fig. 4a).

Previous research by Kong et al. [19] found that TGF-p1
upregulated the expression of miR-155, leading to altered
SMAD signaling; however, another study found miR-155 to
be decreased by TGE-p [18]. While the data from these find-
ings are confounding, they suggest that the expression of
miR-155 by TGF-p could be dependent on the pathological
setting, e.g., fibrosis vs. wound healing, and the cells they are
directly acting in. We found that, in the absence of miR-155,
TGEF-B was not induced, supporting the findings by Zhang
et al. that miR-155 can induce TGF-P expression [23].

The data presented here imply that blockade of the IL-1
receptor or sequestration of IL-1 from the circulation
could be of therapeutic benefit to SSc patients. Drugs such
as kineret, rilonacept, or ilaris may prove efficacious for
this, as yet, untreatable pathology. Currently, there is a

placebo-controlled clinical trial underway to determine
whether rilonacept could be used to treat SSc. Rilonacept
sequesters IL-1 from the circulation using an antibody
that binds and inactivates IL-1. Administration of IL-1RA,
which blocks IL-1 from binding its receptor, has been
used in various human and animal studies to prevent vari-
ous organ fibroses [24-29] and it is further suggested that
blockade of IL-1 signaling may also be beneficial. Further-
more, elevated IL-1 or decreased IL-1RA has been directly
associated with fibrosis. Decreased expression of IL-1RA
has been found in idiopathic pulmonary fibrosis and this has
been specifically linked to the single nucleotide polymorph-
ism at rs2637988 which controls expression of the gene
[30, 31]. Children deficient in IL-1RA have chronic inflam-
mation that can lead to fibrosis of the lungs or vertebra, if
they survive long enough [32]. Further supporting this ob-
servation, the uncontrolled expression of IL-1 in Familial
Mediterranean Fever or Muckle-Wells Syndrome has been as-
sociated with an increased risk for peritoneal fibrosis [33, 34].

Conclusions

These data imply that miR-155 is a critical regulator in
the fibrotic process and that miR-155 expression
requires the NLRP3 inflammasome processing of IL-1
leading to fibrosis. Thus, we propose that the inflamma-
some is the initiator causing IL-1 transcription and
autocrine signaling that drives the expression of miR-
155 via an IL-1 signaling mechanism (Fig. 5). miR-155
synergizes with the inflammasome to induce a positive
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miR-155 expression

inflammasome abrogates this process
.

Increased IL-1 expression

Inflammasome Activation
/ﬁaspase—l inhibition

IL-1 release

J\J

IL-1 autocrine signaling

Fig. 5 miR-155 and interleukin-1 (/L-7) provide a feed-forward mechanism during fibrosis. In fibroblasts, activation of the inflammasome drives
miR-155 expression via IL-1 autocrine signaling that further enhances IL-1 transcription and leads to fibrosis. Blockade of the IL-1 receptor or the

Collagen

IL-1 Receptor Antagonist

feed-forward signal that further promotes IL-1 release
and autocrine signaling leading to continual collagen ex-
pression. Inhibiting either the IL-1 receptor with its an-
tagonist or the inflammasome with YVAD breaks this
cycle, and abrogates miR-155 expression and fibrosis.
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