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Abstract

Background: Sjogren's syndrome (SS) shares many clinical and pathological similarities with systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA). These autoimmune diseases mostly affect women. In this
study, concept profile analysis (CPA) and gene expression meta-analysis were used to identify genes potentially
involved in SS pathogenesis.

Methods: Human genes associated with SS, SLE, and RA were identified using the CPA tool, Anni 2.1. The
differential mRNA expression of genes common to SS and SLE (SS-SLE) was determined in female peripheral
blood mononuclear cells (PBMCs) using NCBI-GEO2R. Differentially expressed (DE) SS-SLE PBMC genes in common
with the SS-SLE CPA-identified genes were analyzed for differential expression in salivary glands or synovial biopsies,
and for genes common to SS and RA and SLE and RA, analyzing differential expression in salivary glands in SS, synovial
fibroblasts in RA, and synovial fluid in SLE. Among common genes, DE genes found in salivary gland mRNA expression
in patients with SS were used for gene enrichment and SS molecular network construction. Secondary analysis was
performed to identify DE genes unique to the disease site tissues, by excluding PBMC and CPA common DE genes to
complement the SS network.

Results: We identified 22 DE genes in salivary gland datasets in SS that have not previously been clearly associated
with SS pathogenesis. Among these, higher levels of checkpoint kinase 1 (CHEKT), V-Ets avian erythroblastosis virus E26
oncogene homolog 1 (E7S7), and lymphoid enhancer binding factor 1 (LEFT) were significantly correlated with higher
matrix metalloproteinase 9 (MMP9) levels. Higher MMP9 levels have been implicated in degradation of salivary gland
structural integrity, leading to hypo-salivation in patients with SS. Salivary gland mRNA expression of MMP9 and the
expression of cytokine CXCL10 were higher in patients with SS. CXCL10 has been shown to increase MMP9 expression
and therefore may also play an important role in SS pathogenesis.

Conclusion: Using CPA and gene expression analysis, we identified factors targeting MMP9 expression and/or function,
namely CHEK1, CXCL10, ETST, LEF1, and tissue inhibitor of metalloproteinase 1; altered mRNA expression of these could
increase expression/activity of MMP9 in a concerted manner, thereby potentially impacting SS pathogenesis.
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Background

Sjogren’s syndrome (SS) is a chronic autoimmune disease
affecting up to 3% of the population [1]. SS is primarily
characterized by dysfunctional exocrine glands due to
lymphocytic infiltration, resulting in excessive dry mouth
(xerostomia) and dry eyes (xerophthalmia) [2]. Auto-
immune diseases often share common clinical and
pathological features such as innate immune response
activation, chronic inflammation, development of spe-
cific autoantibodies, and systemic dysfunction of mul-
tiple organs [1, 3, 4]. SS is most closely associated
with the two autoimmune disorders, systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA)
[5]. Autoimmune diseases are usually more common
in women. In particular, SS and SLE overwhelmingly
affect women, with a ratio of women to men of 9 to
1 [6-9]. RA also affects more women than men but
less drastically (ratio of 2-3 to 1) [9, 10].

Despite overlapping pathophysiological markers shared
among SS, SLE and RA, the exact mechanism respon-
sible for the onset and progression of these diseases is
not fully understood [9, 11]. In recent years, in the
search for biomarkers unique to SS or common between
SS, SLE, and RA, several meta-analyses studies have
been performed to compare multiple SS gene expression
datasets with each other or in conjunction with SLE and
RA datasets [11-13]. In these studies, gene expression
analyses were conducted using data from peripheral
blood mononuclear cells (PBMCs) or from the biopsies
of tissues affected in each disease, i.e., the salivary glands
(SGs) in SS, and synovial biopsies in SLE and RA [11-13].

Most previous meta-analyses studies have focused on
identification of the genes that demonstrate the largest
fold change in messenger RNA (mRNA) expression
among SS patient samples compared to controls. Large
fold changes in transcriptional expression of certain
genes observed in these studies, however, could be ir-
relevant to disease etiology. The large fold changes may
be characteristic of disease progression during advanced
stages rather than at disease onset or during pre-
symptomatic stages. For example, high levels of type I
interferon (IFN)-related genes (e.g., IFN-a) are expressed
in PBMCs and SG biopsies from patients with SS [14, 15].
However, increased levels of this cytokine in the SGs could
be largely attributed to lymphocytic infiltration [14, 15]
and not directly related to the SS etiological mechanisms
initiated in the SGs. Indeed, having the recently identified
potential disease susceptibility genes [2, 16, 17], along with
infection by viruses with high tropism for the exocrine
glands, are conditions suspected to play important roles in
the etiology of SS ahead of the development of systemic
autoimmune responses [18, 19].

Moreover, SS predominantly occurs in women and an X
chromosome dosage effect has been recently identified
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[20]. Previous meta-analysis studies comparing SS, SLE,
and RA mostly used gene expression data from both male
and female patients [11, 12]. There is a mounting body of
evidence suggesting that higher susceptibility to SS in
women could be associated with the aberrant expression
of specific genes located on the X chromosome in con-
junction with X-linked epigenetic events, possibly invol-
ving the activation of endogenous retroviruses [21-25].

The use of concept profile analysis (CPA) based on
biosemantics text-mining has emerged as a promising
approach for biomedical discoveries especially when the
amount of data is limited or inadequate, limited catego-
ries of controls are used, or there is a lack of general un-
derstanding in disease mechanisms [26—28]. Similar to
Gene Ontology (GO) analysis, in CPA each biological
entity (e.g., genes, diseases, symptoms, pathways, chemi-
cals, drugs, tissues, or toxins) can represent a concept of
a profile belonging to another concept and be ranked in
the order of relevance within a list, thus defining a hie-
rarchy based on literature mining [26—28]. Concept pro-
files can be matched against the human genome using
data mining tools [26].

In this study, we used CPA to establish lists of genes
relevant to SS, SLE, and RA with the goal of identifying
novel candidate biomarkers of SS etiology or markers
critical to the development of SS. Genes common to SS,
SLE, and RA, and genes unique to either disease, were
identified using publically available gene expression
datasets.

Methods

Concept profile analysis using the Anni 2.1 program

Anni 2.1, an online concept-mining tool, was used to
perform CPA. This program systematically retrieves li-
terature that contains two concepts of interest such as
“gene” and “disease”, in an abstract, and ranks the genes
from highest to lowest occurrence using a vector space
model to generate the ranked association scores [26, 27].
A higher score is assigned to greater occurrence of a
particular gene and queried disease, corresponding to a
higher degree of association [26]. Scoring by Anni 2.1
also identifies pairs of concepts that are not found to-
gether in an abstract but are associated with a third con-
cept occurring in a PubMed abstract with either concept
of the pair (co-occurrence) [26].

We used Anni 2.1, first, to obtain concept profiles re-
lated to the three concepts “Sjogren’s syndrome”, “sys-
temic lupus erythematosus”, “rheumatoid arthritis” and
associated published literature. These concept profiles
were matched to Homo sapiens genes (Anni 2.1 embed-
ded human genome database) thereby producing lists of
genes ranked based on their degree of association with
each disease concept.
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After processing of duplicates and errors in the three
Anni 2.1 output listings, cutoffs in gene ranking (i.e., 250,
500, 1000, 2500, or 5000 genes) were tested to determine
appropriate stringency that would limit non-specific over-
representation, and at the same time, would optimize
pathway-related gene enrichment procedures in down-
stream in silico functional genomics analyses. The 2500
gene cutoff retrieved for each disease (ie., SS, SLE, and
RA) provided appropriate stringency. The three lists of
2500 genes were overlaid using a Venn diagram generator
(http://bioinfogp.cnb.csic.es/tools/venny/index.html) [29]
to determine subsets of genes common to all three disea-
ses, genes common to pairs of diseases, and genes unique
to each disease. Subsets of genes were used to determine
differential expression of each gene, using publically avail-
able gene expression databases, and to investigate their
SS-related biological functions by using GO and molecu-
lar network analysis programs.

The Anni 2.1 PubMed database latest update had been
performed in 2010. Thus, to include additional disco-
vered genes from 2010 to 2016 in the three gene listings,
manual PubMed searches were conducted using keywords
corresponding to disease concepts with the highest Anni
2.1 association scores (Additional file 1: Table S1).

Gene expression analysis of PBMCs and primary disease
sites in women

Gene expression datasets obtained from PBMCs or tissue
biopsies from patients with SS, SLE, or RA and from con-
trols were retrieved by searching the National Center for
Biotechnology Information-Gene Expression Omnibus
(NCBI-GEO) database using the terms “Sjogren’s syn-
drome”, “systemic lupus erythematosus”, and “rheumatoid
arthritis” through May 2016 (Table 1) [30].

To select gene expression datasets used in our study,
the following criteria had to be met: (1) the gene expres-
sion dataset had to be generated from biological samples
obtained from human subject cases and controls that
were age-matched overall; and (2) due to the higher
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incidence of SS, SLE, and RA in women, either the data-
set had to contain female subjects only, or the male sub-
jects had to be removed for further analysis.

Out of 16 gene expression datasets for SS, 21 for SLE,
and 27 for RA, only one PBMC dataset for each disease
met all the criteria (GSE48378 for SS, GSE10325 for
SLE, GSE15573 for RA). The RefSeq gene IDs in the
dataset GSE48378 were converted to gene symbols using
the gene ID conversion tool (g:Profiler) [31].

For disease site-specific analyses, five among 64 gene
expression datasets were retrieved from the NCBI-GEO
database. Three datasets selected for SS were from
minor SGs (MSG) [GEO:GSE23117] [32], labial SGs
(LSG) [GEO:GSE40568] subset of minor salivary glands)
[33], and parotid glands (PG) [GEO:GSE40611] [34]
(Table 1). Datasets selected for SLE and RA were from
synovial biopsies [GEO:GSE36700] and synovial fibro-
blasts [GEO:GSE7669], respectively (Table 1).

For all selected datasets, differentially expressed (DE)
genes in representative tissues of women with SS, SLE,
or RA were identified using the online web application
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) [30].
For individual probes of candidate genes identified by
Anni 2.1 and the manual PubMed searches, fold changes
or average fold changes in expression were determined
from the GEO2R LogFC data from one or more datasets.
To ensure that the gene expression data analyses were un-
affected by genes represented by multiple probe values,
the same probe was used for each gene across all datasets.

Gene enrichment and functional network analysis

DE genes were selected for enrichment if they exhibited
markedly different fold changes (>1.5 or<-1.5) in at least
two of the three SS SG datasets (i.e, GSE23117, GSE40611,
or GSE40568), and were not DE in the opposite direction
in the third dataset. Selected DE genes were enriched using
GO biological processes and the Kyoto Encyclopedia of
Genes and Genomes (KEGG; http://www.genome.jp/kegg/)
pathways functional analysis module in GeneCodis

Table 1 Gene expression datasets used for meta-analysis of SS, SLE, and RA

Disease GEO accession Female patients Female controls Tissue type

SS GSE48378 1 16 PBMCs

SLE GSE10325 14 1 PBMCs (CD4" T cells/CD19" B cells)
RA GSE15573 14 10 PBMCs

SS GSE23117 10 5 Minor salivary gland (MSG)

SS GSE40611 17 12 Parotid gland (PG)

SS GSE40568 5 3 Labial salivary gland (LSG)

SLE GSE36700 4 2 Synovial biopsy

RA GSE7669 5 4 Synovial fibroblast

Gene expression datasets with their corresponding disease are listed by Gene Expression Omnibus (GEO) accession numbers. For all datasets, the total numbers
of patients in the disease and control groups and their tissue types are listed. SS Sjogren’s syndrome, SLE systemic lupus erythematosus, RA rheumatoid arthritis,

PBMC peripheral blood mononuclear cell
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(http://genecodis.cnb.csic.es/) [35]. To identify func-
tional associations between the SS, SLE, and RA
enriched subsets, the “Search Tool for the Retrieval of
Interacting Genes/Proteins-database” (STRING-db; http://
string-db.org/) [36] server was utilized. To expand on our
functional network and to provide complementary con-
nections within and between gene clusters, we included
the major single nucleotide polymorphism (SNP)-contain-
ing candidate genes associated with SS disease susceptibil-
ity identified in two independent genome-wide association
studies (GWAS) [2, 16].

Strategy for combined CPA and gene expression analyses
Two CPA and gene expression analysis methodologies
were used (i.e., analysis 1 (Fig. 1); analysis 2 (Additional
file 2: Figure S1)). Analysis 1 (Fig. 1) consisted of 4
phases: phase 1 included the CPA and matching to the
human genome by prioritizing the comparison of SS
with SLE and SS with RA; phase 2 consisted of the ana-
lysis of mRNA differential gene expression in PBMCs
from female patients using NCBI GEO datasets (Table 1)
to determine genes common to the three diseases and
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those uniquely common to SS and SLE or SS and RA;
phase 3 extended the gene expression analysis to disease
sites (i.e., NCBI GEO datasets obtained from SGs for SS,
synovial biopsies for SLE, and synovial fibroblasts for
RA) for PBMC DE genes in female patients with SS,
SLE, or RA determined in phase 2; and phase 4 corre-
sponded to gene enrichment and functional analyses
using computational systems biology tools. While ana-
lysis 1 (Fig. 1) followed a directional process from CPA
to gene expression analysis, analysis 2 followed a direc-
tional process from gene expression analysis to CPA
(Additional file 2: Figure S1).

Results

Our overarching goal was to identify candidate bio-
markers of SS (the focus of this study) by using two
approaches, namely analysis 1 (Fig. 1) and analysis 2
(Additional file 2: Figure S1), each consisting of 4 phases.
In analysis 1, we derived genes associated with SS, SLE,
and RA by using CPA (ie, Anni 2.1) and compared
those genes to the DE genes of the SS, SLE, and RA
PBMC datasets (phases 1 and 2). DE genes found to be

Phase 1

Analysis 1

ANNI 2.1 Biosemantics Search

Concept: Sjogren’s syndrome
(2500 genes)

Concept: Systemic lupus erythematosus
(2500 genes)

Concept: Rheumatoid arthritis
(2500 genes)

Genes unique to SS & SLE
(n=279)

Common genes: SS+SLE+RA
(n=1570)

Genes unique to SS & RA
(n=104)

Analysis of selected genes

|SS SLE (279 g )+1570 genes[ | SS RA common (104 genes) +1570 common genes ‘
PBMC Expression Analysis
FC>1.5 FC<-1.5
‘ /.
| common :ommon common common common common
Multi-Tissue
Gene
Expression m m —>@ —»@
Comparison
7] ss (w0 s ss s ] s
IR i >[5 >[5
| e | |
] v I
l 14
Genes that are:
+FC> 1.5 or -FC < -1.5 in at least 2/3 SS salivary gland microarrays

and in their respective PBMC data (n=76 genes)

v

I Gene enrichment and Functional Analysis |

Fig. 1 Flowchart representing the study workflow strategy. Phase

1: concept Profile Analysis (CPA) of human genes associated with each concept,

“Sjogren’s syndrome” (SS), “systemic lupus erythematosus” (SLE), and “rheumatoid arthritis” (RA), and finding common genes between SS-SLE and
SS-RA. Phase 2: comparison of common genes from phase 1 with peripheral blood mononuclear cell (PBMC) datasets for each disease, SS, SLE,
and RA. The criteria for comparison per disease were female subjects only, and a gene expression cutoff of 2 +1.5 or <-1.5 fold changes (FO).
Phase 3: comparison of gene expression of selected common genes from the PBMC and disease site (e.g., salivary gland for SS) datasets to
identify differentially expressed (DE) genes. Phase 4: total 76 DE genes were identified from salivary gland datasets from patients with SS and
used for gene enrichment and functional analysis to generate molecular interaction network 1. MSG minor salivary gland, LSG labial salivary
gland, PG parotid gland, SY synovial biopsy, SY fib. synovial fibroblast
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in common were further evaluated against SS, SLE, and
RA DE genes belonging to the disease sites (e.g., salivary
glands for SS) (phase 3). We identified genes DE in
PBMCs and at least two SS SG datasets, excluding genes
differentially expressed in the opposite direction in a
third SS SG dataset. Further, to prevent the possibility of
missing SS DE genes in SGs but not in PBMCs, analysis
2 was performed by eliminating the PBMC DE genes
and keeping only SG DE genes. We also performed a
comparison between SLE and RA (complementary ana-
lysis) for information purposes, using the same approach
as in analysis 1. A summary of the results is presented
subsequently.

Analysis 1 - phase 1: knowledge-based correlation analysis
of genes associated with SS, SLE and RA

Using the Anni 2.1 online program, concept profiles
were obtained for the three diseases: SS, SLE, and RA.
Our query matching the three concepts, “Sjogren’s syn-
drome”, “systemic lupus erythematosus”, and “rheuma-
toid arthritis”, with the list of human genes embedded in
Anni 2.1 as “Homo sapiens genes” concept, retrieved all
known human genes associated with each disease to a
variable extent based on abstract occurrence in PubMed.
From the ranked gene output, generated by Anni 2.1, we
selected the top 2500 genes providing appropriate strin-
gency for downstream gene GO and molecular network
analysis (see “Methods”). All common and unique genes
for SS, SLE, and RA found by our CPA are shown in the
Venn diagram (Fig. 2a).

As shown in Fig. 2a, 1570 genes (62.8%) were common
to the three related autoimmune diseases [4]. A total
of 279 genes were uniquely common to SS and SLE,
104 genes uniquely common to SS and RA, and 308
uniquely common to SLE and RA. These results sug-
gest that SS and SLE share greater similarity than SS
and RA in terms of common gene representation.

Analysis 1 - phase 2: comparative gene expression

analysis of PBMCs in female patients with SS, SLE, and RA
Using CPA (Anni 2.1), 1849 genes (1570 +279) were
found in common between SS and SLE and 1674 genes
(1570 + 104) in common between SS and RA (Fig. 2a).
Table 1 lists the NCBI-GEO PBMC gene expression
datasets used in our analysis of each disease. The NCBI
GEO2R online R-based expression analysis tool was used
to identify DE genes (fold changes (FC)>+/-1.5 in up
and down directions) in female patients compared to fe-
male controls (Venn diagram, Fig. 2b-e). Particular focus
on comparing SS to SLE, identified a total of 248 DE
genes in SS, 124 upregulated (UR) (Fig. 2b left), 124
downregulated (DR) (Fig. 2b right), and 678 DE genes in
SLE, 375 (UR) (Fig. 2c left), and 303 (DR) (Fig. 2c right).
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Fig. 2 Comparison of common genes identified by matching concept
profile analysis (CPA) against differentially expressed genes of peripheral
blood mononuclear cell (PBMC) gene expression datasets of patients
with Sjoégren’s syndrome (S9), systemic lupus erythematosus (SLE), and
rheumatoid arthritis (RA). a The lists of 2500 genes per disease (i.e, SS,
SLE, and RA), found by the text mining tool Anni 2.1, were compiled
and overlaid to generate a Venn diagram. A total of 1570 genes (62.8%)
were common among the three diseases, 279 genes were found in
common between SS and SLE only and 104 genes were common
between SS and RA only. b-e After acquiring PBMC microarrays for all
three diseases from NCBI-GEO, the genes were sorted and separated
based on their gene expression variation with the fold change cutoff
of 2 +1.5 (+fold change (FQ)) and £-1.5 (- FO) for each disease (SS +
FC SS—FC, SLE + FC, SLE — FC, RA + FC and RA — FQ). b Selected genes
from PBMC datasets for SS (SS+ FC and SS — FC) were compared
with the common genes between SS and SLE (1570 + 279 = 1849).
¢ Selected genes from PBMC datasets for SLE (SLE + FC and SLE —
FC) were compared with the common genes between SS and SLE
(1570 + 279 =1849). d Selected genes from PBMC datasets of SS (SS +
FCand SS — FC) were compared with the common genes between SS
and RA (1570 + 104 = 1674). e Selected genes from PBMC datasets of
RA (RA+FC and RA — FC) were compared with the common genes

between SS and RA (1570 + 104 = 1674)

v
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The SS and SLE DE genes were then compared to the
1849 SS and SLE common genes determined by CPA
(Anni 2.1) (Fig. 2a) with the following results: a total of
41 (Fig. 2b left) and 81 (Fig. 2c left) (UR) genes, and 13
(Fig. 2b right) and 52 (Fig. 2c right) DR genes in PBMCs
from patients with SS or SLE were in common (see gene
listings in Additional file 3: Tables S2-S5).

Further, specific to the comparison of SS to RA, DE
genes in PBMCs from patients with SS (Fig. 2d left, 124
up; Fig. 2d right, 124 down) and DE genes in PBMCs from
patients with RA (Fig. 2e left, 146 up; Fig. 2e right, 81
down) were identified. These DE genes were then
compared to the 1674 SS and RA common genes as deter-
mined by CPA (Fig. 2a) with the following result: a total of
37 (Fig. 2d left) and 27 (Fig. 2e left) UR genes, and 13
(Fig. 2d right) and 18 (Fig. 2e right) DR genes in PBMCs
from patients with SS or RA were found to be in common
(see listings in Additional file 4: Tables S6-S9).

Analysis 1 - phase 3: expression analysis of phase 2
candidate genes associated with SS, SLE, and RA in
disease sites among female patients

After comparative gene expression analysis of SS, SLE,
and RA PBMCs, we investigated the fundamental role
played by the DE genes individually and collectively, pri-
marily in SS. The primary pathological manifestation that
defines SS occurs in major and minor SGs and is charac-
terized by periductal lymphocytic infiltration of the glands
resulting in destruction of acinar cells [37, 38]. SLE and
RA, on the other hand, affect various tissues and have dif-
ferent primary pathological manifestations such as swell-
ing and inflammation of skeletal joints [8, 39].

All DE genes in PBMCs from SS, SLE, and RA datasets
that were found in common with the CPA-identified genes
(phase 2 as described previously, Fig. 2 and Additional
files 3 and 4: Tables S2-S9) were used to determine
their differential expression in the SG datasets.

We identified 76 genes (Additional file 5: Table S10)
that were differentially expressed in at least two of the
three SG microarray datasets, and not in the opposite
direction in the third dataset. All CPA-derived disease
site expression data are shown in Additional files 3, 4,
and 6: Tables S2-S5, S6-S9, S11-S14). Of the 76 genes,
TIMP1 and MMP9 have been associated with SS [40, 41].
The following 22 genes have not been described clearly
before as being linked to the pathogenesis of SS: AURKA,
CD163, CD74, CES1, CHEKI1, CLEC4C, COL4A3, CXCLS,
CXCR6, ETS1, IL2RB, ITGB1, LAMP3, LEF1, MKI67,
PTGIS, RADSI1, SLCI8A2, STAT2, TACRI, TNXB, and
TSHR. To understand the potential role of these DE genes
in the pathogenesis of SS, we used all the 76 DE genes for
functional classification and molecular network-related
pathway analysis.
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Analysis 1 - phase 4: functional classification and molecular
network pathway analysis of phase 3 candidate genes

For functional classification and disease association of
the 76 phase 2 DE genes, we used GeneCodis (http://
genecodis.cnb.csic.es) for KEGG disease pathway ana-
lysis [35, 42, 43]. The GeneCodis analysis of the GO bio-
logical process revealed 16 major functional categories
of gene sets (Table 2). These functional categories, in-
cluding cytokine-mediated signaling, type-1 interferon
(IFN) response, and response to virus, have been pre-
viously associated with SS [6, 14].

GeneCodis KEGG pathway analysis confirmed that
many of the 76 genes are involved in disease and infection,
including autoimmune diseases (Table 3). The functional
associations between these genes were then determined
by creation of a gene interaction map (molecular network)
using the STRING-db web service [36]. STRING-db
formulates gene maps with connections/interactions
derived from both empirical evidence (including lit-
erature sourced through text mining) and functionally
predicted interactions based on characteristics such as
protein structure [36].

To further substantiate the relevance of our metho-
dology and findings, we incorporated into our molecular
network major genes that had previously been attributed
to SS pathogenesis based on multiple GWAS [2, 16, 17].
These genes include: TNIP1, TNFAIP3, GTF2I, STAT4,
BLK, ILi12A, HLA-DRB1, HLA-DQBI, PTTGI1, HLA-
DPBI1, HLA-DQA1, COL11A2, and TAP2. By doing so,
we identified several key interactions that overlapped
seamlessly with our original molecular network model
(Fig. 3, network 1), giving further support to our ap-
proach. We identified both UR (n=43) and DR genes
(n=2). Genes (n=14) found by independent GWAS of
SS are also represented in network 1 [2, 16]. Further, we
found 22 DE genes (14 UR genes and 8 DR genes) that
were associated with both IFN-a and chemotaxis path-
ways, but not yet shown to be clearly associated with SS
(Additional file 5: Table S10). Of these DE genes, CHEK1,
ETSI, and LEFI are known to increase the expression of
MMP9 [44-47] which has been implicated in the patho-
genesis of SS [40, 41]. In addition, CXCL10 (Fig. 3), shown
to increase the expression of MMP9 in a colorectal cancer
model [47], is also part of network 1 (Fig. 3).

We further investigated the differential expression of
other known regulators of MMP9 expression such as
TIMPI1, an inhibitor of MMP9 function [40, 41]. Al-
though, TIMP1 was not found to be DE in any of the
PBMC datasets, its expression was DR 1.5-fold on aver-
age in the three SG datasets. We also determined
whether any of the 76 genes identified in phase 3 were
included in our network (Fig. 3) by using our set criteria
for differential expression and by excluding genes with
known clear association with SS (i.e., the 22 genes).
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Table 2 Gene enrichment of SS-related pathways using GeneCodis
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Annotations-biological processes NG Hyp_c*

1. GO:0019221: cytokine-mediated signaling pathway 15 5.95006e-17
2. GO:0006955: immune response 14 4.76772e-11
3. GO:0060337: type | interferon-mediated signaling pathway 8 142292e-09
4. GO:0006954: inflammatory response 11 2.4668%-09
5. GO:0007166: cell surface receptor signaling pathway 9 2.3665%¢-08
6. GO:0006935: chemotaxis 8 4.83921e-08
7. GO:0032496: response to lipopolysaccharide 8 7.63604e-08
8. GO:0071260: cellular response to mechanical stimulus 5 9.01203e-06
9. GO:0008284: positive regulation of cell proliferation 9 8.76728e-06
10. GO:0019882: antigen processing and presentation 5 9.656e-06
11. GO:0002544: chronic inflammatory response 3 2.33879e-05
12. GO:0045087: innate immune response 8 2.62163e-05
13. GO:0009615: response to virus 6 4.64203e-05
14. GO:0060333: interferon-gamma-mediated signaling pathway 5 5.66952e-05
15. GO:0032355: response to estradiol stimulus 5 7.95296e-05
16. GO:0007165: signal transduction 13 7.872e-05

The 76 genes, found by concept profile analysis and differentially expressed in salivary glands of patients with Sjogren’s syndrome (SS), were grouped based on
Gene Ontology (GO) [34, 65]. NG number of annotated genes in the input list of 76 differentially expressed genes

*Hyp_c is the corrected hypergeometric p value

Also, despite the fact that carboxylestrase 1 (CESI)
gene was significantly DR in all three SG datasets (4.24-
fold, within the top 2% on average of < - 1.5 FC DR genes
in all SG datasets; Additional file 5: Table S10) and UR
in PBMCs (1.63 fold; Additional file 3: Table S2), the

STRING-db network analysis did not identify CESI (ex-
cluded from network 1; Fig. 3). This was due to the lack
of connections between CESI and other genes part of
network 1 (Fig. 3), even when using the lowest confi-
dence level for stringency in STRING-db.

Table 3 KEGG pathways of SS-related DE genes associated with diseases using GeneCodis

Items Disease NG Hyp_c* Genes
1. Kegg05162 Measles 12 1.25E-14 STATI, STAT2, OAS2, MX1, FAS, IFNG, DDX58, IL2RB, OAST, IFIHT, TACRI,
TLR7
2. Kegg:05160 Hepatitis C 7 461E-07 STATI, STAT2, OAS2, IFIT1, DDX58, OAST, LDLR
3. Kegg:05145 Toxoplasmosis 6  521E-06 STATI1, MAP2K3, IFNG, LY96, ITGBI, LDLR
4. Kegg:05142 Chagas disease (American trypanosomiasis) 5  341E-05 FAS IFNG, CALR, CD247, CFLAR
5. Kegg:05152 Tuberculosis 3 206E-02 STATI, CD74, IFNG
6. Kegg:05140 Leishmaniasis 3 267E-03 STATI, IFNG, ITGB1
7. Kegg:05146 Amoebiasis 3 701E-03 IFNG, CDID, COL5AT
8. Kegg:05332 Graft-versus-host disease 3 343E-04 KLRCI, FAS, IFNG
9. Kegg:05320 Autoimmune thyroid disease 2 149E-02 FAS, TSHR
10. Kegg:05143 African trypanosomiasis 2 984E-03 FAS, IFNG
11. Kegg:05412 Arrhythmogenic right ventricular 2 322B-02 LEF1, ITGBI
cardiomyopathy
12. Kegg:05130 Escherichia coli infection 2 205E-02 LY%, ITGBI
13. Kegg:04940 Type | diabetes mellitus 2 1.00E-02 FAS, IFNG
14. Kegg:05323 Rheumatoid arthritis 2 409E-02 CXCL5, IFNG
15. Kegg:05212 Pancreatic cancer 2 3.07E-02 STATI, RAD51

List of diseases associated with the 76 differentially expressed (DE) genes in salivary glands of patients with Sjogren’s syndrome (SS) from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis. NG Number of genes out of the 76 DE genes

*HYP_c is the corrected hypergeometric p value
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Fig. 3 Pathway analysis of 76 selected differentially expressed genes
with emphasis on three subnetworks. Using the online program
STRING-db, we generated a broad interaction network from our
selected 76 genes. Within the network, we assigned particular
colors to each node (gene) to represent the expression of that
particular gene in patients with SS. Node colors are explained in
the figure. The yellow nodes are originally derived from previous
genome-wide association studies (GWAS) of patients with Sjogren’s
syndrome (SS) and are added for the validation and strengthening of
our independently derived network. The red and purple nodes represent
genes that are upregulated and downregulated in SS, respectively.
Similarly, the light blue and green nodes represent genes exhibiting
upregulation and downregulation in SS, respectively. These genes have
not yet been strongly linked to SS pathophysiology. The lines
connecting the nodes (edges) represent interactions between
two nodes and can be derived from evidence or inferred from
previously known data: magenta experimentally derived; blue
predicted interaction through gene co-occurrence; gray predicted
functional interaction derived from either homologous protein
interactions in other species/associations in curated databases/
co-mentioned in PubMed abstracts; yellow transcriptional regulation
(experimentally derived); black reaction (experimentally derived); and
purple catalysis (experimentally derived). Edges ending in a green
arrow, red bar, or black circle represent an action between the

two nodes that can range from positive, negative, or unspecified,
respectively. Subnetworks: A genes of the interferon gene family
and interferon-stimulated genes are outlined by a black dashed
line; B genes associated with chemotaxis are outlined by a black
dashed line; C genes identified in our study as potential biomarkers
of SS are outlined by a light green dashed line
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Our analysis also revealed two major biological signaling
pathways (Fig. 3). First, the IFN-a pathway/immune
response pathway can be attributed primarily to the sig-
nificant upregulation of IFN-stimulated genes (ISGs) (sub-
network A; Fig. 3). The second major pathway, the
chemotaxis initiation pathway (subnetwork B; Fig. 3), is
the result of chemokine-related gene stimulation that ini-
tiates dendritic cell recruitment to SG areas. Part of the
remaining genes were used to create a subnetwork related
to the MMP9 regulatory pathway (subnetwork C; Fig. 3).

Analysis 2: genes differentially expressed in SGs but not
in PBMCs of patients with SS

Here, we sought to confirm some of the genes of net-
work 1 (Fig. 3) found to be UR in analysis 1 (Additional
file 2: Figure S1). First, the genes UR in at least two sa-
livary gland datasets, and not DR in the third (n=2769
genes) were compared with the UR genes from SS PBMC
dataset (n =303 genes) (Additional file 7: Figures S2, S3).
The 118 DE genes in common were eliminated, leaving
only the SG DE genes (n=2651) (Additional file 7:
Figures S2, S3). The 2651 remaining SG-specific DE
genes were then compared to the 1570 CPA-identified
genes common to SS, SLE, and RA, which resulted in
381 common genes (Additional file 7: Figure S4). A
second network, network 2 (Additional file 8: Figure S5),
was created using these 381 genes, to be compared with
network 1 (Additional file 9: Figure S6). These two net-
works (including subnetworks A, B, and C) partially over-
lapped and did not significantly alter the previously stated
conclusions.

Nevertheless, analysis 2 revealed certain DE genes that
had not been detected in the initial analysis. Of particu-
lar interest were the genes related to the MMP9 regula-
tory pathway, ie, SMAD3, TIMP2, TIMP3, and TLR4.
DE genes belonging to a subset of both networks were
combined to create a composite network (Additional
file 10: Figure S7), incorporating 15 genes from network
1 (subnetwork C; Additional file 9: Figure S6) and 35
genes from network 2 (subnetwork C; Additional file 8:
Figure S5). This composite network includes four com-
mon genes in the MMP9 regulatory pathway, namely
CHEKI, ETS1, LEFI and RAD51. Additionally, by re-
peating the same process and looking at DR genes from
SG datasets and PBMCs, we identified 640 genes gene-
rating a much larger and complex network (n =308
genes at the highest STRING-db confidence level) (data
not shown).

Complementary analysis: CPA of SLE and RA for
determination of common genes differentially expressed
in PBMCs and the respective disease site specimens

SLE datasets were compared to the RA dataets by using
the same discovery process as in analysis 1 (i.e., phase 1,
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CPA SS vs. SLE vs. RA; phase 2, CPA vs. PBMCs; phase
3, PBMCs vs. disease site; phase 4, network analysis).
This analysis resulted in identification of 1878 genes
(1570 + 308) in common between RA and SLE using
CPA. Further, 107 genes were found to be UR and 77
genes DR based on the PBMC datasets. Comparing these
184 DE genes to the 1878 CPA-identified genes resulted
in 91 common DE genes in the SLE synovial fluid da-
taset (67 UR and 24 DR) and 14 DE genes in the RA
synovial fibroblast dataset (9 UR and 5 DR) (Additional
file 6: Tables S11-S14). Further functional analysis is re-
quired to determine the relevance of these genes to the
pathogenesis of both SLE and RA.

Discussion

The pathophysiology of autoimmune disorders such as
SS, SLE, and RA is complex, yet all share some common
clinical features such as active innate immune response,
T cell signaling, and chronic inflammation [3, 4]. The
etiology of these diseases remains poorly understood
[4, 23, 24], although there is a growing body of evi-
dence that X chromosome dosage, viral infection, and
retro-element activation might play an important role
in the onset of SS and SLE [20, 21, 23-25].

The majority of previous approaches have focused pri-
marily on inter-disease gene expression between SS,
SLE, and RA at the expense of intra-disease gene expres-
sion. Additionally, in previously performed meta-analysis
studies of SS, SLE, and RA, gene expression profiles of
PBMCs only were reported [11, 12]. Other meta-analysis
studies have focused on a single disease (e.g., SS, SLE, or
RA) using samples from the disease site (e.g., SGs for
SS, synovial fluid for SLE, or synovial fibroblasts for RA)
[13, 48, 49]. A major caveat of these meta-analysis ap-
proaches is the lack of gene expression comparison be-
tween PBMCs and the primary site of disease pathology.
Thus, the mechanistic changes in PBMCs, which could
potentially correlate to changes at the primary site of
disease or provide clues as to how these changes might
govern tissue-specific autoimmunity, remain largely un-
explored. Also, small expression changes in gene subsets
acting in concert to significantly impact a biological dis-
ease pathway may have not been fully characterized in
these previous studies [50].

To our knowledge, this is the first study combining
concept mining analysis (CPA using Anni 2.1) and gene
expression analysis data on PBMCs along with primary
disease site tissues in female patients with SS, SLE, or
RA. This study focused on SS by comparing independent
mRNA expression datasets generated from PBMCs
along with disease-site specimens for SS (SGs), SLE (syn-
ovial fluid), and RA (synovial fibroblasts).

Our CPA-identified genes were investigated for their
differential expression in PBMC datasets across the three
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diseases (SS, SLE, and RA) and then further analyzed for
their differential expression in datasets generated from
disease-site specimens. Minute curation of datasets and
the use of CPA identified 22 DE genes in female patients
with SS that have not yet been clearly attributed to SS
pathophysiology. Among these 22 genes, 21 (excluding
CES1) along with the other previously identified genes
involved in SS pathogenesis (e.g., MMP9 and TIMPI)
formed a tight molecular network (network 1) with a
high level of confidence. This result is suggestive of the
potential importance of these genes in SS development
and progression. Our results are overall consistent with
the previous findings showing differential regulation of
most genes involved in various biological pathways such
as IFN-a signaling, chemotaxis, or response to viral
infection.

Additionally, CESI which was not part of network 1,
was found DR by more than fourfold in SGs and UR
(~1.6-fold) in PBMCs, indicating that this downregula-
tion may not be directly associated with lymphocytic in-
filtration. The role of the CESI gene in SS pathogenesis
warrants further investigation. CES1 has been linked to
the pathogenesis of non-Hodgkin’s lymphoma, possibly
involving a mechanism by which the downregulation or
deficiency in CES1 reduces the ability of macrophages to
kill cancer cells [51]. In addition, patients with SS are 44
times more susceptible to developing non-Hodgkin’s
lymphoma compared to the normal population [52].

Perez et al. showed that high MMP9/TIMPI mRNA
and protein ratios correlated closely with destruction of
the basal lamina of acinar and periductal cells in patients
with SS [40, 53]. MMP9 came under our scrutiny be-
cause its expression is considerably higher in all of the
SG-related microarray gene expression datasets, whereas
its expression remained unchanged in the PBMCs of pa-
tients with SS. Our meta-analysis confirmed that MMP9
mRNA expression is UR in the SGs of patients with SS,
as has been previously described [40, 53].

We identified genes (ie., CHEKI, ETS1, LEFI, TIMPI,
and CXCL10) in network 1 and/or network 2, which were
DE in all SG datasets of patients with SS. These genes regu-
late the expression or function of MMP9 [44-46, 54-56].
CHEKI, CXCLI10, ETS1, and LEFI have been previously
shown to UR MMP9 expression in experimental systems
in vitro [44-47, 55, 57]. Additionally, DR of TIMPI in all
SG datasets is consistent with a previous study that showed
TIMPI downregulation at the mRNA level, using RT-PCR,
and at the protein level, using immunohistochemical assays
[40]. TIMP1 downregulation at the protein level was shown
to increase MMP9 function in a post-translational process
[40]. Also, RADS51 (Additional files 8, 9 and 10: Figures S5,
S6, S7) is involved in DNA repair processes such as tel-
omerase repair by direct interaction with CHEK1, a process
that might impact X chromosome inactivation [58-61].
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(See figure on previous page.)

Fig. 4 Proposed model explaining the loss of human salivary gland structural integrity in Sjogren’s syndrome (SS) based on the computational
biosemantics analysis, gene expression and network analyses. @ Major and minor salivary glands of the oral cavity. b Potential combinatorial factors
may lead to SS. The current model involves multiple factors that together may play a role in the development of the disease. The primary factors include
genetics, environmental factors, viruses, and retro-elements that may disrupt homeostasis. ¢ Salivary unit portion showing individual acini. Acinar cells
from these glands secrete water, salts and/or protein (major components of saliva) into the oral cavity. In SS, capillaries surrounding salivary tissue mediate
the immune response by passing various interferons and chemokines produced by acinar cells into the bloodstream, which initiate the dendritic cell
movement to the area. d Transcription factors ETST and LEF1 could directly upregulate (UR) matrix metalloproteinase 9 (MMP9) expression. MIMP9, also
known as gelatinase B, is involved in extracellular matrix degradation. e TLR7 is suggested to be a major player in the secretion of cytokines such as
CXCL10 in systemic lupus erythematosus and other autoimmune diseases. MMP9 and CXCL10 feedback potentiate extracellular matrix (ECM) destruction.
CXCL10, a cytokine, stimulates dendritic cell recruitment to a specific area while at the same time has been shown to increase MMP9 expression in a
positive feedback-like mechanism. TIMP1, also known as tissue inhibitor of metalloproteinases, binds directly to metalloproteinases inhibiting
their enzymatic activity. While MMP9 and TIMP1 are regulated in a ratio-specific manner, patients with SS have markedly UR levels of MMP9

and downregulated TIMP1, which might play a role in the progression of glandular destruction brought on by the disease

Furthermore, the upregulation of ETSI found in our study
of three SG datasets, is consistent with the study by Liang
et al. [58]. In this study, higher ETSI expression in SS was
shown based on the same parotid gland dataset used in our
study. The expression of ETS1 remained unchanged in the
SS PBMC dataset analyzed in our study, suggesting a
role in the disease pathophysiology and/or the etiology
of SS in regard to a possible pre-existing susceptibility
within the SG.

In the present study, we also confirmed CXCL10 to be
one of the most significantly UR cytokines in all SS pa-
tient datasets, as compared to other cytokines such as
IL-6, IL-8 and CCLS5. CXCL10 is known to increase
MMP9 expression [47, 57]. Importantly, we also found
CXCLI0 expression to be significantly higher in PBMCs
from patients with SS (2.17 FC). In contrast CHEK,
ETSI, and LEF1 were only found UR in the SG datasets.
Notably, TLR7, a gene found by the complementary ana-
lysis that yielded 381 genes, was significantly UR (3.34
FC) in all SG datasets, but not in the PBMCs from
patients with SS. TLR7 has been shown to upregulate
expression of cytokines such as CXCL10 in SLE via rec-
ognition of nucleic acids including retro-element Alu
RNA or foreign RNA/DNA from incoming viruses. In
particular CXCL10 is known to induce MMP9 expres-
sion, which could damage the extracellular matrix
(ECM) and SG cells, potentially affecting saliva secretion
[62]. Further, in SGs CXCL10 is known to trigger re-
cruitment and chemotaxis of monocytes [47]. We also
analyzed the expression of TIMPI1, a major inhibitor of
MMP9 in all SG datasets of patients with SS. As antici-
pated, the expression of this gene was lower in the SG
datasets of these patients compared to controls.

Overall, the results from both analyses raise the possi-
bility that combined effects of candidate genes, CHEK],
ETSI1, LEF1, TIMPI1, and CXCL10, might lead to in-
creased MMP9 levels that can potentially be detrimental
to the structural integrity of the SGs in patients with SS.
Furthermore, TIMPI is an X-linked gene that has been
investigated for the effects of its polymorphisms in X

chromosome inactivation [63, 64]. Whether TIMPI has
any role in the imbalance of the female/male ratio re-
mains to be determined. Because mRNA expression
levels do not necessarily correlate with protein levels,
biological experiments are warranted to demonstrate
whether direct or combined regulatory effects of CHEK1,
ETS1, LEFI, and TIMPI on MMP9 expression or function
indeed occur in patients with SS.

Based on our findings and current literature, we
propose a model providing an explanation for the po-
tential impact on the etiology and pathophysiology of
SS of the candidate genes discussed (Fig. 4). In this
model, we have also taken into consideration the poten-
tial role of viruses, retro-elements and other environ-
mental factors in SS. The present study uncovered the
potential impact of PBMC DE genes on tissue-specific
gene expression profiles related to SS. This fundamen-
tal comparison could provide a deeper understanding
of the etiology of SS or similar diseases. We have shown
that combining CPA with curated gene expression data-
sets can be useful in identifying candidate biomarkers
of complex diseases or in the targeted drug discovery
process [26—28, 65].

A limitation of our analysis is the lack of uniformly
normalized data across platforms and optimal controls
in the original experiments. One of the eight datasets
used was based on an Illumina platform and the rest
were from the Affymetrix platform, indicating that the
FC in expression is approximate. Also, there are funda-
mental differences between the cellularity and gene ex-
pression profiles of different cell types within the SG
tissue, including periductal, acinar and infiltrated mono-
nuclear cells. The microarray datasets available in
GEOR2R for SS have been generated from the studies that
did not account for these differences in cellularity, e.g.,
by using a laser capture microdissection technique.
Nevertheless, to find the most relevant candidate genes
involved in the pathogenesis of SS, our approach com-
pared datasets from the related autoimmune diseases,
SS, SLE, and RA.
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Conclusions

Opverall, our meta-analysis combining both CPA and gene
expression analysis supports the hypothesis that increased
levels of MMP9 resulting from dysregulation of CHEK1,
ETS1, LEF1, TIMP1 and CXCL10 might contribute to the
pathogenesis of SS. Further molecular and biochemical
experiments are required to confirm potential biomarkers
associated with the MMP9 regulatory pathway in order to
better understand the etiology of this complex disease. In
conclusion, targeting multiple MMP9 effectors might be a
useful strategy for therapeutic development in SS.
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