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GPR120 is an important inflammatory
regulator in the development of
osteoarthritis
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Abstract

Background: The aim of this study was to investigate the regulatory role of G-protein coupled receptor 120
(GPR120) in the development and progression of osteoarthritis (OA).

Methods: GPR120 knockout (KO) and wild-type (WT) mice were used to create an animal model of OA by means of
anterior cruciate ligament transection (ACLT) surgery. The severity of OA was staged and evaluated by histological
examination, microcomputed tomography scan and enzyme-linked immunosorbent assay (ELISA). The anti-inflammatory
effects of the GPR120 agonist docosahexaenoic acid (DHA) on human chondrocytes were further evaluated by specific
inflammatory markers. In addition, the healing progression of a skin defect model was determined with histological assays.

Results: The GPR120-KO mice displayed an accelerated development of OA after ACLT. The secondary inflammation,
cartilage degeneration, and subchondral bone aberrant changes were significantly elevated in the early phase of OA in KO
mice relative to those in WT mice. In addition, we found that GPR120 levels were downregulated in OA patients
compared with control subjects, whereas GPR120 activation with DHA exhibited anti-inflammatory effects in primary
human chondrocytes in vitro. Moreover, results from the skin defect model showed that GPR120 agonism with DHA
enhanced wound repair in mice, as shown by the downregulation of the number of CD68+ cells.

Conclusions: Our study suggests that GPR120 is an important inflammatory mediator during the development of OA, and
that it is a potential marker for the diagnosis of high-risk patients with OA.

Keywords: G-protein coupled receptors, Polyunsaturated fatty acids, Proinflammatory mediators, Cartilage, Subchondral
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Background
Osteoarthritis (OA) is one of the leading causes of
physical disability and affects nearly 80% of individuals
older than 75 years in the US [1]. Current pharmaco-
logical therapies are mainly targeted at the level of
symptomatic control, which is less effective for disease
progression. Better understanding of the pathogenesis

of OA is crucial for the design and development of
novel therapeutic agents. Obesity is one of the primary
risk factors for OA, but the underlying mechanisms in-
volved have yet to be determined [2]. It is believed that
an increased loading by weight gain on the joints is at-
tributable to the obesity-accelerated OA; however, the
mechanical factors alone do not account for the higher
incidence of OA in nonweight-bearing joints, such as
the hands [3]. Interestingly, previous studies have
shown that morbidly obese mice do not develop OA
when fed with standard or low-fat diet [4]. These find-
ings suggest that other factors rather than adiposity or
body weight contribute to OA in obesity, such as lipid
metabolism homeostasis or the circulating levels of
adipokines.
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It was reported that obesity-associated oxidative stress in-
duces lipolysis of adipocytes and thus increases the circulat-
ing levels of free fatty acids (FAs) [5] . The circulating FAs
can serve as either proinflammatory or anti-inflammatory
molecules for metabolic signaling; for example, the satu-
rated FAs can activate macrophages to secrete tumor ne-
crosis factor (TNF)-α and interleukin (IL)-1, thereby
activating the proinflammatory pathways [5]. In this regard,
the derivatives of ω-6 polyunsaturated FAs (PUFA) are in-
volved in joint pain [6, 7], while ω-3 FAs are reported to re-
duce spontaneous OA in animals on a low-fat diet [8].
Generally, by binding its receptor, ω-3 PUFA gives rise to
anti-inflammatory oxylipins such as protectins and resol-
vins, whereas ω-6 PUFA produce proinflammatory oxyli-
pins including numerous prostaglandins and leukotrienes
[9]. Furthermore, it has been reported that the surface of
cartilage is covered with a layer of phospholipids that serves
as a boundary lubricant during joint loading [10]. There-
fore, changes in the composition of this lubrication layer
due to either injury or abnormal lipid metabolism may im-
pact the function of the articular joint and potentially lead
to the onset of OA [11]. These findings imply that free FAs
or metabolic factors play a relatively direct role in the
process of joint degeneration, but the regulatory roles of
the ω-3 FAs and their receptors in the development of OA
still need to be further investigated.
G-protein coupled receptor 120 (GPR120), or free fatty

acid receptor 4 (FFA4), is known to bind with ω-3 and
stabilize the metabolic homeostasis via cascades of physio-
logical activities [12, 13]. Activation of GPR120 with its
agonists such as docosahexaenoic acid (DHA) has an
insulinotropic effect on pancreatic beta-cell secretion and
survival, with therapeutic potential for obesity-associated
type 2 diabetes [14]. In fact, GPR120 stimulation confers
protection from obesity and diabetes by inhibiting inflam-
matory responses, modulating hormone secretions from
the gastrointestinal tract and pancreas, and regulating
lipid and/or glucose metabolism in adipose, liver, and
muscle tissues [15]. However, whether GPR120 plays a
role in OA is still largely unknown. The objective of this
study was to investigate the role of GPR120 in the devel-
opment of OA and whether it can be a potential marker
for the diagnosis of high-risk patients with OA.

Methods
GPR120 knockout mice
GPR120 global knockout (KO) mice (Ffar4tm1(KOMP)Vlcg,
http://velocigene.com/komp/detail/15078) were produced
by the Knockout Mice Project (KOMP) Repository
(UCSD, CA, USA) as has been reported previously [16].
Briefly, the targeting vector was constructed by ligating
the fragments of 5’ and 3’ homology recombination arms
and the fragment for the lacZ-ployA-loxP-hUbCpro-
neor-ployA-loxP cassette. The targeting vector was

introduced into C57BL/6 embryonic stem cells, where the
original DNA was replaced by homologous recombin-
ation. The coding region of mouse GPR120 consists of
three exons, exons 1–3. The major parts of exon 1 and 3
and the whole of exon 2 were replaced with the aforemen-
tioned cassette. Using heterozygous GPR120 KO mouse
sperm provided by KOMP, we established GPR120 KO
mice by performing in-vitro fertilization. Our experimen-
tal procedures were approved by the Animal Experimental
Ethics Committee of the Chinese University of Hong
Kong (ref. 13/044/GRF-5).

Genotyping
The last 3–5 mm of mouse tails were digested with 100
μl 50 mM NaOH for approximately 25 min in a water
bath at 95 °C, and then centrifuged to remove cell deb-
ris. Real-time polymerase chain reaction (RT-PCR) ana-
lysis was performed using 1 μl genomic DNA to
determine the expression of the tag gene Neomycinresis-
tance (Neor) and GPR120. Primers for the genotyping
are listed in Additional file 1.

Clinical sample collection
The study was approved by the Joint Chinese University of
Hong Kong-New Territories East Cluster Clinical Research
Ethics Committee (ethical approval code CRE-2013.248) or
the First Affiliated Hospital of Guangzhou University of
Chinese Medicine Clinical Research Ethics Committee (eth-
ical approval code YJ-2015.034) and informed consent was
obtained from each donor. The clinical specimens (cartilage
or fat tissues) were obtained from patients with OA during
total knee arthroplasty surgery (n = 10; seven women and
three men; age 62.3 ± 4.5 years, range 45–72 years) in the
Prince of Wales Hospital, Chinese University of Hong
Kong. The clinical samples for the control group were col-
lected from bone fracture patients with no previous history
of OA during fracture surgery in the First Affiliated Hos-
pital of Guangzhou University of Chinese Medicine (n = 9;
five women and four men; age 58.8 ± 3.6 years, range 32–
77 years).

Animal models
Male GPR120-KO mice or wild-type (WT) mice, 12
weeks old and weighing 20–25 g, were used in this study
(ref. 13/044/GRF-5). Animals were acclimatized to local
vivarium conditions at a temperature of 24–26 °C and
humidity of 70% with free access to water and a pelleted
commercial diet in the mouse house under specific
pathogen-free (SPF) conditions. For the OA model, WT
or KO mice were used for the OA and control groups
(n = 10). In the OA group, the right knee joint of the
mice received anterior cruciate ligament and medial
collateral ligament transection (ACLT) surgery as
previously described [17]. In the sham-operated group
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(n = 10), only the skin of the right knee joint was resected.
Samples were collected at 6 weeks after the operations. At
4 and 6 weeks postoperation, WT and KO mice from each
group were randomly selected and killed for the collection
of blood serum and right knee joint samples.
For the skin defect model (ref. 17–145-ITF), WT or

KO mice were used in each group (n = 5). The dorsolat-
eral skin of the mice was first punched using a 4-mm
skin biopsy punch and the mice were then divided into
docosahexaenoic acid (DHA; Cayman Chemical, USA)
and control groups. In the DHA group, the mice were
treated daily with 180 μl DHA (7 mg/ml) by gavage ad-
ministration; in the control group, the mice were given
phosphate-buffered saline (PBS) by gavage. Photos of the
wound were taken for 8 consecutive days and wound
sizes were estimated using ImageJ software (National In-
stitutes of Health, Bethesda, MD.). All mice were sacri-
ficed at day 8 and skin samples were collected.

Cell experiments
Nonfibrillated cartilage samples (OARSI scores of 0–3) col-
lected from patients during total knee arthroplasty surgery
were analyzed in this study. The cartilage tissues were
washed and minced into pieces before being sequentially
digested with 0.25% trypsin (Life, USA) for 20 min and
0.2% (2 mg/ml) type II collagenase (Sigma, USA) for 24 h
at 37 °C. After centrifugation, the supernatants were re-
moved and the chondrocytes were cultured in alpha mini-
mum essential medium (α-MEM) + 10% fetal bovine serum
(FBS) (both from Invitrogen Corp., Carlsbad, CA, USA).
The cell type was identified by collagen II immunostaining.
For the inflammatory induction study in the TNF-α +

DHA group, chondrocyte cells at passages 2 to 3 were
seeded on 24-well plates (5 × 104 cells/well) in serum-free
Dulbecco’s modified Eagle’s medium (DMEM) and treated
with 50 ng/ml TNF-α (Sigma, USA) and 10 μg/ml DHA
(Cayman Chemical, USA). For the TNF-α group, cells
were treated with 50 ng/ml TNF-α; neither TNF-α nor
DHA were applied to the cells in the control group. Cells
were harvested after 24 h of incubation.
The gene expression levels of chemokine (C-C motif) lig-

and 2 (Ccl2), cyclooxygenase 2 (Cox2), IL-1β, matrix metal-
lopeptidase (MMP)-13, and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) for chondrocytes induced by
TNF-α were determined using RT-PCR. Primer sequences
are listed in Additional file 2.

Enzyme-linked immunosorbent assay (ELISA)
measurements
For the human clinical samples, fat tissues were collected
(1 × 1 cm3) from the OA patient group and the non-OA
patient control group. Samples were weighed, mechanic-
ally homogenized and ground into powder with liquid ni-
trogen, and then were treated with ice-cold tissue protein

extraction reagents (Life Technologies, Pleasanton, CA,
USA). Samples were then centrifuged and tested using a
GPR120 ELISA examination kit according to the protocol
suggested by the manufacturer (Fine Test, China).
For the animal samples from the OA model, a 1-ml

blood sample was collected by cardiac puncture immedi-
ately after the mice were sacrificed. The blood sample
was then centrifuged and the TNF-α level tested using a
TNF-α ELISA kit according to the protocol suggested by
the manufacturer (Dakewe, China).

Microcomputed tomography (μCT) assessment
The right knee joints of mice from the OA model were
fixed overnight in 10% formalin. Samples were then ana-
lyzed using high-resolution μCT scan (μCT40, Scanco
Medical, Basserdorf, Switzerland). Three dimensional
(3D) reconstructions of the mineralized tissues were per-
formed using a global threshold (216 mg hydroxyapatite/
cm3) and a Gaussian filter (sigma = 0.8, support = 2) was
used for noise suppression. One hundred sagittal images
of the tibial subchondral bone were used to perform the
3D histomorphometric analysis. The bone mineral dens-
ity (BMD), bone volume/total tissue volume (BV/TV),
trabecular thickness (Tb.Th) and structure model index
(SMI) were analyzed as the 3D structural parameters.

Histological and immunochemical examinations
Mouse tissue samples including colon tissues from
GPR120 KO mice, right knee joints collected from the
OA model, the skin of the back from the skin defect
model, and the human chondrocytes were fixed in 10%
formalin, while the knee joint was additionally treated
with 10% ethylenediaminetetraacetic acid (EDTA) for de-
calcification for 14 days before paraffin embedding. Fro-
zen samples were embedded in the optimum cutting
temperature (OCT) compound (Sakura Finetek, Zoeter-
woude, The Netherlands) and then sectioned at 5 μm
thick for skin and right knee joint samples and 6 μm
thick for colon samples at the sagittal-oriented position
for Safranin-O/fast green, hematoxylin and eosin (H&E),
and immunofluorescent staining.
For immunofluorescent staining, the colon tissues and

human chondrocyte were incubated with primary anti-
bodies to chicken anti-beta galactosidase (Abcam, 1:100,
ab9361) and rabbit anti-Collagen II (Abcam, 1:300,
ab34712), respectively, overnight at 4 °C. Secondary anti-
bodies conjugated with fluorescence goat anti-chicken or
goat anti-rabbit CY3 (Life Technologies, Pleasanton, CA,
USA; 1:800) were added, and slides were incubated at
room temperature in the dark for 1 h. Photographs of
the selected areas were taken under a microscope.
Immunostaining was performed using a standard

protocol as previously reported [18, 19]. We incubated
the sections with primary antibodies to rabbit MMP13

Chen et al. Arthritis Research & Therapy  (2018) 20:163 Page 3 of 11



(Abcam, 1:50, ab3208) and collagen X (Abcam, 1:80,
ab58632), Osterix (Abcam, 1:600, ab22552), and CD68
(Boster, 1:100, BA2966) overnight at 4 °C. For immuno-
histochemical staining, a horseradish peroxidase–strep-
tavidin in the detection system (Dako, Carpinteria, CA,
USA) was subsequently used, followed by counterstain-
ing with hematoxylin. Photographs of the selected areas
were taken under a light microscope. We counted the
number of positively stained cells and repeated in tripli-
cate in three randomly selected sections in the area of
interest per specimen, and the numbers of cells were sta-
tistically analyzed.

Statistical analysis
In accordance with the ARRIVE guidelines [20], we have
reported measures of precision and n to provide an indi-
cation of significance. All statistical analyses were per-
formed using the statistical software SPSS 15.0. The data
were analyzed by one-way analysis of variance (ANOVA),
except for data on wound healing analysis which were
tested by two-way ANOVA. Data are reported as mean
and 95% confidence interval (CI). The graphs were gener-
ated using GraphPad Prism 6 (GraphPad Software, San
Diego, CA, USA).

Results
Validation of GPR120-KO mice
Genotyping result showed that only WT mice showed ex-
pression of GPR120 at the genomic DNA (Fig. 1a) or
mRNA level (Fig. 1b, c), while such expression was not de-
tected in GPR120-KO mice. β-galactosidase activity is a
surrogate of GPR120, and immunofluorescent staining
also showed that β-galactosidase-positive cells (red) could
be found in colon tissue of the KO mice while it was ab-
sent in WT mice (Fig. 1d). These results indicated that
knockout of the GPR120 gene was successfully generated.
In addition, changes in body weight of the KO and the
WT mice were also found to be not statistically different
(mean 33.97, 95% CI 28.97–38.98 g, versus 30.99, 95% CI
29.41–32.56 g, respectively; n = 10; p > 0.05) (Fig. 1e).
Taken together, these results provide evidence of the suc-
cessful establishment of the GPR120 KO mice.

Acceleration of cartilage degeneration in GPR120-KO
mice with surgically induced OA
Safranin-O/fast green staining showed that there were
significantly more degenerative features in the knee
joint samples of KO mice compared with those of WT
mice at 4 weeks postoperation, while the cartilage dam-
age is obvious in both groups 6 weeks after the OA sur-
gery. No abnormal cartilages were observed in the
sham group (Fig. 2a). Based on the OARSI histologic
grading system, the scores indicated that KO mice
showed more severe cartilage degeneration (16.5, 95%

CI 15.02–17.98; n = 10) than WT mice (6.9, 95% CI
5.441–8.358; n = 10; p = 0.0034) at 4 weeks postopera-
tion, and the cartilage damage was significantly worse
in both KO and WT mice at 6 weeks postoperation
(19.52, 95% CI 16.32–22.72, and 19.38, 95% CI 17.49–
21.27, respectively; n = 10; p > 0.05). For the sham
group, both KO and WT mice showed minimum cartil-
age damage (0.6, 95% CI 0.2306–0.9694, versus 0.6,
95% CI 0.23–0.97, respectively; n = 10; p > 0.05) (Fig. 2a
and Additional file 3). Moreover, the percentage of type
X collagen (ColX)-positive chondrocytes and MMP13+

chondrocytes in cartilage were both higher in the KO
mice (46.2, 95% CI 39.35–53.04, and 50.19, 95% CI
46.11–54.28, respectively; n = 5; p < 0.01) than in WT
mice (32.70, 95% CI 27.66–37.74, and 32.92, 95% CI
26.73–39.11, respectively; n = 5) at 4 weeks after sur-
gery (Fig. 2b, c and Additional file 4A, B). In the sham
control group, both KO and WT mice showed the low-
est percentage of ColX+ chondrocytes (KO: 25.96, 95%
CI 19.22–32.70; WT: 27.51, 95% CI 23.19–31.82; n = 5)
and MMP13+ chondrocytes (KO: 23.88, 95% CI 16.66–
31.09; WT: 25.95, 95% CI 17.34–34.56; n = 5). The
highest percentage of ColX+ (KO: 57.46, 95% CI 51.75–
63.17; WT: 52.86, 95% CI 46.93–58.79; n = 5) and
MMP13+ chondrocytes (KO: 56.82, 95% CI 52.23–
61.41; WT: 52.14, 95% CI 46.86–57.41; n = 5) were
found in both KO and WT mice at 6 weeks postopera-
tion (Fig. 2b, c and Additional file 4A, B).

Aggravation of abnormal bone remodeling in
subchondral bone in GPR120-KO mice with surgically
induced OA
The 3D reconstructed images from μCT showed the
microarchitecture of the mouse subchondral bone in all
groups (Fig. 3a). The results showed that, at 4 weeks
after OA surgery, the abnormal bone formation in sub-
chondral bone was significantly more severe in KO mice
(BMD: 481.5, 95% CI 464.5–498.6 mg/cm3, n = 10; BV/
TV: 0.5515, 95% CI 0.5130–0.5901, n = 10) than in WT
mice (BMD: 429.5, 95% CI 406.9–452.1 mg/cm3, n = 10,
p = 0.0256; BV/TV: 0.4630, 95% CI 0.4162–0.5097, n =
10, p = 0.0359) (Fig. 3b, c). At 6 weeks after operation,
the abnormal bone formation was severe in both KO
(BMD: 496.3, 95% CI 461.9–532.1 mg/cm3, n = 10; BV/
TV: 0.5619, 95% CI 0.5225–0.6014, n = 10) and WT
mice (BMD: 498.4, 95% CI 472.1–524.7 mg/cm3, n = 10,
p = 0.7446; BV/TV: 0.5913, 95% CI 0.5441–0.6385, n =
10, p = 0.736) (Fig. 3b, c). In the sham control group, ab-
normal bone formation was mild in both KO (BMD:
447.9, 95% CI 429.0–466.8 mg/cm3, n = 10; BV/TV:
0.4935, 95% CI 0.4543–0.5326, n = 10) and WT mice
(BMD: 424.2, 95% CI 407.2–441.1 mg/cm3, n = 10, p =
0.22; BV/TV: 0.4482, 95% CI 0.3971–0.4992, n = 10, p =
0.3957) (Fig. 3b, c).
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Trabecular bone thickness (Tb.Th.) in KO mice (0.1505,
95% CI 0.1436–0.1575 mm; n = 10) was higher than that
in WT mice (0.1292, 95% CI 0.1219–0.1364 mm; n = 10;
p = 0.0217) at 4 weeks postoperation, and at 6 weeks after
surgery Tb.Th was at the highest level for both WT and
KO mice (0.155, 95% CI 0.1438–0.1662 mm, and 0.1676,
95% CI 0.1616–0.1736 mm, respectively; n = 10; p > 0.05)
(Additional file 4D). Tb.Th. was lowest in KO and WT
mice from the sham group (0.1208, 95% CI 0.1145–

0.1272 mm, and 0.1108, 95% CI 0.1016–0.1201 mm, re-
spectively; n = 10) (Additional file 4D). Furthermore, KO
mice had a significantly more decreased SMI (−1.167, 95%
CI −1.846 to −0.4884; n = 10) than WT mice (0.0036, 95%
CI−0.6356 to 0.6283; n = 10; p > 0.05) at 4 weeks after the
OA surgery, though no statistically significant differences
were found (Additional file 4E). SMI was at the lowest
level for both WTand KO mice (−1.985, 95% CI −3.073 to
−0.8975, and −0.6783, 95% CI −1.351 to −0.005,

Fig. 1 Validation of GPR120 knockout mice. a Agarose gels demonstrate Neor, Gpr120, and Gapdh amplification products in mouse genomic
DNA. b The GPR120 mRNA level was detected by real-time PCR in colon (positive control tissue) of wild-type (WT) and homozygous knockout
(Homo KO) mice (n = 4/group). c Agarose gels demonstrate Gapdh and Gpr120 amplification products in mouse colon cDNA. d The presence of
β-galactosidase, a surrogate for GPR120 in the KO mouse, is detected by immunofluorescence in mouse colon tissue. Colon sections from WT
(upper) and homo KO (bottom) mice were stained with antibody against beta-galactosidase (red). Magnification of the image ×100. e The body
weight of the two group do not show statistical difference
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respectively; n = 10; p > 0.05) at 6 weeks postoperation; in
the controls, SMI in WT mice was 0.2041 (95% CI
−0.1689 to 0.5772) and in KO mice it was −0.054 (95% CI
−0.4845 to 0.375). There were no statistically significant
differences (Additional file 4E).
Furthermore, the results of immunohistochemistry

staining with Osterix, an osteoprogenitor, revealed that
KO mice had a significantly higher increase in numbers of
Osterix-positive cells in the subchondral bone marrow
than WT mice 4 weeks after OA surgery (KO: 277.8, 95%
CI 250.9–304.7; WT: 151.2, 95% CI 130.8–171.6; n = 5, p
< 0.001) (Fig. 3d and Additional file 4C), while at 6 weeks
postoperation an upregulated number of Osterix-positive
cells could be observed in both KO and WT mice (KO:
335.2, 95% CI 293.3–377.1; WT: 323.6, 95% CI 285.3–
361.9; n = 5). Only a few Osterix-positive cells could be
found in the sham control groups for both KO and WT
mice (KO: 112.6, 95% CI 87.83–137.4; WT: 115.4, 95% CI
78.30–152.5; n = 5) (Fig. 3d and Additional file 4C).

Upregulation of plasma levels of TNF-α in GPR120-KO
mice with surgically induced OA
ELISA showed that the level of TNF-α was significantly
higher in KO mice (18.04, 95% CI 5.08–30.56 pg/ml; n =
5) when compared with that of WT mice (5.54, 95% CI

3.436–7.645 pg/ml; n = 5; p = 0.022) at 4 weeks after the
OA surgery (Fig. 4a). At 6 weeks after the operation,
TNF-α was at a high level in both KO (15.15, 95% CI
−1.347 to 31.65 pg/ml; n = 5) and WT mice (12.62, 95%
CI 4.442–20.81 pg/ml; n = 5). The sham control group
showed the lowest TNF-α level in both KO (6.3, 95% CI
−1.820 to 14.42 pg/ml; n = 5) and WT mice (9.234, 95%
CI −1.162 to 19.63 pg/ml; n = 5) (Fig. 4a).

Downregulation of GPR120 expression in OA patients
ELISA was used to analyze the human clinical samples col-
lected from the OA or non-OA patients during surgery.
The result indicated that the GPR120 level was significantly
more downregulated in OA patients (470.5, 95% CI 368.9–
572.1 pg/ml; n = 10) than non-OA patients (803.6, 95% CI
700.2–907 pg/ml; n = 9; p = 0.0349) (Fig. 4b).

GPR120 activation-induced inhibition of inflammatory
factor expression in human chondrocytes
The result of immunofluorescent staining showed that
the primary human chondrocytes expressed Collagen II
(a chondrocyte marker) (Additional file 5). It has been
reported that the chondrocytes express GPR120 [21]
and, in this study, the RT-PCR result showed that DHA,
a GPR120 agonist, could induce anti-inflammatory

Fig. 2 a Safranin-O/fast green staining and quantification of the histologic results using the Osteoarthritis Research Society International Cartilage
Histopathology Assessment System (OARSI score) indicated articular cartilage damage in all groups. Black arrows show the damaged region of
the cartilage. **p < 0.01, compared with the wild-type (WT) osteoarthritis (OA) mice at 4 weeks (4w). Scale bar = 400 μm. Immunohistochemical
analysis of b type X collagen (COL X)- and c matrix metalloproteinase 13 (MMP13)-positive chondrocytes (brown) in articular cartilage showed
that GPR120 knockout (KO) mice significantly increased the numbers of COL X- and MMP13-positive chondrocytes compared with the WT mice
4 weeks after the OA surgery. The fewest numbers of positive cells could be found in the sham control (Con) in both KO and WT mice, and the
highest numbers of COL X- and MMP13-positive cells can be found in OA at 6 weeks (6w) for both KO and WT mice. Scale bar = 50 μm
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Fig. 3 a 3D μCT images of the tibia subchondral bone medial compartment (sagittal view) of mice in all groups. Quantitative analysis of structural
parameters of subchondral bone by μCT. b Bone mineral density (BMD) and c bone volume/total tissue volume (BV/TV), n = 10 per group. *p < 0.05,
compared with the wild-type (WT) osteoarthritis (OA) mice at 4 weeks (4w). d Immunohistochemical analysis of Osterix-positive cells (brown, red
arrow) in the tibial subchondral region. The result showed that GPR120 knockout (KO) mice significantly increased the numbers of Osterix-positive cells
in subchondral bone compared with the WT mice 4 week after OA surgery. Scale bar = 50 μm. 6w 6 weeks, Con sham control

Fig. 4 ELISA showing a the tumor necrosis factor alpha (TNFα) level in serum in all groups (n = 5 for each group; *p < 0.05, compared with the
wild-type (WT) osteoarthritis (OA) mice at 4 weeks (4w)) and b the GPR120 level in OA (n = 10) and non-OA patients (n = 9). *p < 0.05, compared
with sham control (Con). 6w 6 weeks
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effects in primary human chondrocytes. The mRNA ex-
pression levels of the proinflammatory genes Ccl2, Cox2,
and IL-1β in the TNF-α + DHA group (3.05, 95% CI
1.305–4.79; 1.58, 95% CI 0.8351–2.334; 72.93, 95% CI
−32.57 to 176.7; respectively; n = 6) were significantly
more reduced than those in the TNF-α group (15.26,
95% CI 8.374–22.14; 3.1, 95% CI 1.821–4.378; 277.01,
95% CI 83.63–470.4; respectively; n = 6; p < 0.05) (Fig. 5).
Consistent with this, the TNF-α + DHA group (0.75,
95% CI 0.415–1.087; n = 6) had more dramatically down-
regulated MMP13 mRNA levels than the TNF-α group
(4.05, 95% CI 0.9548–7.153; n = 6; p < 0.05) (Fig. 5).

GPR120 activation-induced protective effect on wound
repair in mice
The DHA-treated GPR120 mice showed significantly
improved tissue regeneration with thickened epithelium

(Additional file 6A). All mice demonstrated a certain de-
gree of regeneration, including re-epithelialization and
new formation of sebaceous glands or hair follicles,
while only the DHA-treated mice showed accelerated
wound repair (Additional file 6B). The infiltration of in-
flammatory cells to the wound margins was evaluated
using the macrophage marker CD68, and the number of
CD68-positive cells significantly decreased in the
DHA-treated mice (146.5, 95% CI 119.1–174; n = 5)
compare with the control mice (63.47, 95% CI 38.84–
88.09; n = 5; p < 0.001) (Additional file 6C, D).

Discussion
This study demonstrated that GPR120 is an important
inflammatory regulator in the development of OA and
wound healing. Several studies have shown that ω-3
PUFA bind to its receptor GPR120 to give rise to

Fig. 5 The GPR120 agonist DHA exhibits anti-inflammatory effects on primary human chondrocytes. a Agarose gels demonstrate Gapdh and
Gpr120 amplification products in human colorectal tumor cell Caco2 (positive control) and human chondrocyte cell cDNA. b Human
chondrocytes were exposed to 50 ng/ml human tumor necrosis factor alpha (TNFα) with or without 25 μM docosahexaenoic acid (DHA) for 48 h.
The mRNA expression levels of the proinflammatory genes Ccl2, Cox2, IL-1β, and MMP13 were assessed (n = 6/group). *p < 0.05, **p < 0.01, ****p
< 0.0001 compared with corresponding vehicle group. NS not significant

Chen et al. Arthritis Research & Therapy  (2018) 20:163 Page 8 of 11



anti-inflammatory oxylipins such as protectins and resol-
vins, whereas ω-6 PUFA produce proinflammatory oxyli-
pins including numerous prostaglandins and
leukotrienes [9]. Additionally, it has been reported that
the surface of cartilage is covered by a layer of phospho-
lipids [10]. Any compositional changes in this lubrica-
tion layer due to either injury or abnormal lipid
metabolism may have an impact on the function of the
articular joint and potentially lead to the onset of OA
[11]. Recently, several studies have demonstrated that
lipid metabolic homeostasis plays an important role in
cartilage degeneration during the development of OA
[22, 23]. In our study, the results were consistent with
the previous studies, showing that cartilage degeneration
was significantly increased in the early phase of OA (i.e.,
4 weeks postoperation) under the GPR120-KO condi-
tion; these observations were shown by the increases in
the OARSI score and the expression of MMP13 and
COLX (Fig. 2 and Additional files 3 and 4), as demon-
strated by Safranin O/fast green and immunohistochem-
ical staining, relative to the changes in WT mice.
Changes in subchondral bone play a key role in the regu-

lation of OA progression [24]. In addition, bone marrow le-
sions are closely associated with pain, which has been
implicated to predict the severity of cartilage damage in
OA [25]. In-vitro studies have previously reported that
GPR120 signaling negatively regulates osteoclast differenti-
ation, survival, and function [26]. Moreover, it has also been
shown that GPR120 activation-mediated cellular signaling
determines the bi-potential of osteogenic and adipogenic
differentiation of bone marrow-derived mesenchymal stem
cells (BMSCs) in a dose-dependent manner [27]. Given that
BMSCs and osteoclasts play a pivotal role in bone remodel-
ing of the subchondral bone, these prior study findings
point to the activation of GPR120 signaling as being of
physiological importance for bone homeostasis. In fact, sev-
eral in-vivo studies have shown that downregulation of the
ω-3-GPR120 signaling leads to abnormalities in bone re-
modeling or osteophyte formation of subchondral bone in
animal model of OA [22, 23]. Interestingly, we also found
that subchondral bone aberrant changes in GPR120-KO
mice were specifically increased in the early phase of OA
(at 4 weeks postoperation) when compared with WT mice
in the present study (Fig. 3 and Additional file 4).
It is known that inflammatory cytokines are the key

regulators of OA [19, 28–30], while the activation of FA
signaling has a critical role in the regulation of
anti-inflammation during OA and wound healing. For
example, activation of GPR120 with ω-3 PUFA is nega-
tively correlated with the severity of OA and the area of
wound healing, whereas it is positively correlated with
adiponectin, an adipokine capable of promoting insulin
sensitization and priming macrophages toward the M2
anti-inflammatory phenotype [23, 31, 32]. More

interestingly, it has been shown that infiltration of mac-
rophages within human adipose tissue significantly in-
hibits GPR120 expression [33]. In light of these findings,
it is plausible to postulate that the downregulation of
GPR120 expression can disrupt the lipid metabolic
homeostasis, thus aggravating the level of inflammatory
responses and ultimately leading to the vicious cycle in
the process of OA and would healing. In corroboration
with previous findings, our in-vitro studies firstly dem-
onstrated that activation of GPR120 signaling inhibits
the expression of inflammatory factors in human chon-
drocytes (Fig. 5). Secondly, our in-vivo studies further
demonstrated that the level of secondary inflammation
in GPR120-KO mice was dramatically increased in the
early phase of OA (at 4 weeks postoperation) when com-
pared with WT mice (Fig. 4a). In addition, our skin de-
fect model indicated that GPR120 agonism with DHA
could accelerate the wound repair and downregulate
the inflammation level at the wound, as evidenced
by the lowered number of CD68+ macrophages
(Additional file 6). Our study findings are in agreement
with a recent study reporting that the defected wound
closure and cartilage regeneration may share a common,
heritable, and OA-associated genetic trait [34].
One of the major obstacles to developing a new treat-

ment option for OA is the lack of an effective and minim-
ally invasive method to predict, diagnose, and monitor its
disease progression. To address this issue, considerable ef-
forts have been recently made for the identification of bio-
markers in a clinical setting. In this regard, a lot of research
for biomarkers has been focused on the release of cartilage
matrix proteins, such as the collagens, proteoglycans, or
cartilage oligomeric matrix protein, in the serum and syn-
ovial fluid [35–37]. Accumulated evidence has emerged
that the development of OA is not only due to cartilage
damage, but also to both systemic and local intra-articular
metabolic factors, notably inflammation, which appear to
play a pivotal role in joint degeneration [38, 39]. In add-
itional to matrix degradation products, inflammatory cyto-
kines and lipid metabolic factors may therefore be potential
biomarkers of OA that are associated with disease mecha-
nisms [40, 41]. Towards this end, one of the novel findings
in the present study is that the expression level of GPR120
was found to be downregulated significantly more in pa-
tients with OA than in non-OA patients (Fig. 4b).
A limitation of this study is the relatively low number of

mice in each group. More time points are also needed for
this OA model to further evaluate the effect of GPR120 on
OA progression. Also, we collected the OA and non-OA
groups for the clinical specimen test without applying
Kellgren grading in the assessment which might help us to
understand the level of GPR120 in OA patients at different
stages. Future research should consider using a larger sam-
ple size, design multiple time points in the animal study,
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and use Kellgren grading in the assessment to further dis-
sect the effects of GPR120 on OA progression.

Conclusions
In conclusion, our data indicate that GPR120 plays an im-
portant role in metabolic homeostasis by showing that
GPR120 downregulation is able to interrupt the metabolic
homeostasis. The dysregulated metabolism may subse-
quently lower the capability of immunoregulation and elicit
more severe immunological reactions upon injury. In
addition, the assessment of the GPR120 level may poten-
tially be applied as a diagnostic marker for high-risk OA pa-
tients. This is the first study to report that downregulation
of GPR120 is a high-risk factor for the pathogenesis of OA,
and these data provide a scientific basis for the develop-
ment of new minimally invasive methods (such as fat tissue
biopsy) to identify the high-risk OA patients who could re-
ceive supplementation with GPR120 agonists as a potential
preventative and therapeutic approach to OA.
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Additional file 1: Primer sequence for mouse genotyping. (PDF 52 kb)

Additional file 2: Primer sequence for quantitative RT-PCR. (PDF 55 kb)

Additional file 3: Safranin O and fast green staining of sagittal sections
of the subchondral tibia medial compartment in all group. Scale bar =
800 μm. (PDF 230 kb)

Additional file 4: Quantitative assay of immunohistochemical staining
for positive cells and structural parameters of subchondral bone by μCT.
(A) Percentages of MMP13, (B) type X collagen (COLX)-positive chondrocytes
in articular cartilage, and (C) The number of Osterix-positive cells in the tibial
subchondral region. (D) Tb.Th. and (E) SMI in subchondral bone determined
by μCT. n = 5 per group. ***p < 0.001, **p < 0.01, *p < 0.05, compared with
the WT OA at 4 weeks. (PDF 175 kb)

Additional file 5: Immunofluorescence staining in human chondrocytes.
The result showed that human chondrocytes were type II collagen (Col
II)-positive (red). Magnification of the image ×100. (PDF 93 kb)

Additional file 6: GPR120 agonist accelerates wound repair in a mouse
skin defected model. (A) Representative images and quantitative assay of
the wound area at 8 days post-wounding. The DHA-treated mice had the
smallest wound area compared with the control mice. Two-way ANOVA, *p
< 0.05. (B) H&E stained images showed that the mice treated by DHA had a
thickened epithelium. The bottom figures are higher magnification views of
the rectangle areas in the upper figures. Black arrow: epidermis; red arrow:
hair follicle. Scale bar = 800 μm (top), 200 μm (bottom). (C) Quantitative and
(D) immunohistochemical analysis of CD68-positive cells (brown) in the
wound healing region. The result indicated that the number of macrophage
marker (CD68)-positive cells in DHA-treated mice is downregulated signifi-
cantly compared with the control mice. The bottom figures are higher mag-
nification views of the rectangle areas in the upper figures. ***p < 0.001.
Scale bar = 400 μm (top), 50 μm (bottom). (PDF 227 kb)
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