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Background: Sex-specific differences in the effect of genetic variants on serum urate levels have been described.
The aim of this study was to systematically examine whether serum urate-associated genetic variants differ in their

Methods: This research was conducted using the UK Biobank Resource. Thirty single nucleotide polymorphisms
(SNPs) associated with serum urate were tested for their association with gout in men and women of European
ancestry, aged 40-69 years. Gene-sex interactions for gout risk were analysed using an interaction analysis in logistic

Results: Gout was present in 6768 (4.1%) men and 574 (0.3%) women, with an odds ratio (95% confidence interval)
for men 13.42 (12.32-14.62) compared with women. In men, experiment-wide association with gout was observed

for 21 of the 30 serum urate-associated SNPs tested, and in women for three of the 30 SNPs. Evidence for gene-sex
interaction was observed for ABCG2 (rs2231142) and PDZK1 (rs1471633), with the interaction in ABCG2 driven by an
amplified effect in men and in PDZK1 by an absence of effect in women. Similar findings were observed in a sensitivity
analysis which excluded pre-menopausal women. For the other SNPs tested, no significant gene-sex interactions were

Conclusions: In a large population of European ancestry, ABCG2 and PDZK1 gene-sex interactions exist for gout risk,
with the serum urate-raising alleles exerting a greater influence on gout risk in men than in women. In contrast, other
serum urate-associated genetic variants do not demonstrate significant gene-sex interactions for gout risk.

Background

Sex differences in the epidemiology, clinical character-
istics, and risk factors for gout have been reported.
Prevalence among gout is higher in men [1], and
women with gout are more likely to be older, have
co-morbidities, and be on diuretics compared with men
with gout [2, 3]. Similar findings have also been noted
with respect to serum urate levels, with men having
higher levels than women with these differences de-
creasing with advancing age [4].
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Raised serum urate is the major risk factor for gout [5,
6]. The heritability of serum urate is estimated at 40—
70% [7-9] and over the past decade genome-wide asso-
ciation studies (GWAS) have identified single nucleotide
polymorphisms (SNPs) associated with serum urate and
gout [10-16]. Sex-specific analysis of genotypes associ-
ated with serum urate and gout have also been exam-
ined. The magnitude of effect of the ABCG2 variant
appears to be greater in men than women for both
serum urate and gout risk [13, 16]. Conversely, the
SLC2A9 variant has been shown to exert greater influ-
ence for serum urate in pre-menopausal women com-
pared with post-menopausal women and with men [17].
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It is unclear whether other serum urate-associated gen-
etic variants display sex-specific differences for gout risk.

The aim of this study was to systematically examine
whether serum urate-associated genetic variants differ in
their influence on gout risk in men and women.

Methods

This research was conducted using the UK Biobank Re-
source (approval number 12611). Participants of Euro-
pean ancestry who were aged 40-69years and with
genome-wide genotypes were included in this study. Ex-
clusion criteria included mismatch between self-reported
sex and genetic sex, genotyping quality control failure,
related individuals, and participants aged 70 years and
over. Gout was defined using a validated definition of
self-report of gout or urate-lowering therapy use (includ-
ing allopurinol, febuxostat, and sulphinpyrazone, and
participants must not have a hospital diagnosis of leu-
kaemia or lymphoma based on the International Classifi-
cation of Diseases, Tenth Revision codes C81-C96) [18].
For participants who did not meet the gout definition,
further exclusion criteria included prescriptions for cor-
ticosteroids, non-steroidal anti-inflammatory drugs or
probenecid. Medication use, co-morbidities, alcohol,
smoking status, and menopausal status data were col-
lected via self-report.

UK Biobank samples were genotyped using an
Axiom array (820,967 markers, Affymetrix, Santa
Clara, CA, USA) and imputed to approximately 73.3
million SNPs using SHAPEIT3 and IMPUTE2 with a
combined UK10K and 1000 Genomes reference panel.
We analysed the 30 SNPs associated with serum urate
reported by Kottgen et al. [10] in the large (> 140,000
European participants) Global Urate Genetics Consor-
tium GWAS.

Data were analysed using IBM SPSS Statistics 25 soft-
ware. Baseline characteristics are summarised using
standard descriptive statistics including means, stand-
ard deviations (SD), and number and percent, and were
tested using unpaired ¢ tests or chi-squared tests where
appropriate. Logistic regression of the 30 SNPs with
gout as the dependent variable in men and women was
performed. The primary analysis calculated association
with gout based on the proportion of participants with
at least one effect allele present. The number of effect
alleles was included in the secondary analysis. Gene-sex
interactions for gout risk were analysed using logistic
regression models that included an SNP by sex inter-
action term. Women with no effect allele were used as the
referent group in the stratified logistic regression analysis.
Age, body mass index, renal failure, and diuretic use were
included as variables in all models. We also performed a
sensitivity analysis which excluded pre-menopausal women.
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Data are reported at experiment-wide significance
(P <0.0017).

Results

Clinical features of participants

Data including genome-wide genotypes were available
for 359,876 participants. Baseline characteristics are
shown in Table 1 with genotype frequencies of the 30
serum urate-associated SNPs shown in Additional file 1
(Table S1). There were 188,221 (53.2%) women, of
whom 142,272 (75.6%) were post-menopausal. Overall,
there were 7342 (2.0%) participants fulfilling the study
criteria for gout. Gout was present in 6768 (4.1%)
men and 574 (0.3%) women, with an odds ratio (OR)
of 13.42 (95% confidence interval (CI) 12.32-14.62)
for men compared with women. Women with gout
were older (mean + SD, 61.8 + 5.9 years vs 59.8 +
6.9 years, P=2.90x10"'"), had a higher body mass
index (BMI; 32.3 + 6.6 kg/m?® vs 30.6 + 4.8 kg/m? P
=7.13x10719), higher diuretic use (35.9% vs 14.8%, P
=6.05 x 107%), and a higher prevalence of renal fail-
ure (3.1% vs 1.3%, P=559x10"% compared with
men with gout.

Association with gout of serum urate-associated SNPs in
men and women

In the entire group, association with gout at experiment-
wide significance was observed for 21 of the 30 serum
urate-associated SNPs tested (Fig. 1). In men,
experiment-wide association was observed for the same
21 SNPs, and in women this association was seen for
three of the 30 SNPs: SLC2A9 (rs12498742), ABCG2
(rs2231142), and GCKR (rs1260326, Fig. 1).

Similar findings were observed when calculating allelic
odds ratios based on the number of effect alleles present
(Additional file 1: Tables S2 and S3). Association with
gout at experiment-wide significance was observed for
22 SNPs in the entire group. In men, experiment-wide
association was observed for the same 22 SNPs, and in
women this association was seen for four of the 30
SNPs: SLC2A9 (rs12498742), ABCG2 (rs2231142), GCKR
(rs1260326), and MLXIPL (rs1178977).

SLC2A9 (rs12498742) and ABCG2 (rs2231142) vari-
ants exerted the largest effect on gout risk in the group
overall (OR for gout 3.07 (95% CI 2.59-3.64), P =8.30 x
107 and 2.26 (2.15-2.37), P=1.64x102*3, respect-
ively; Fig. 1). For the ABCG2 variant a higher risk in
men was observed compared with women (OR for gout
in men 2.38 (95% CI 2.26-2.51), P=3.72 x 10 >**, and in
women 1.63 (1.36-1.96), P=1.19 x 1077), whilst for the
SLC2A9 variant the risk was not statistically different be-
tween sexes as demonstrated by overlapping 95% Cls
(OR for gout in men 3.06 (95% CI 2.57-3.65), P =6.71 x
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Table 1 Baseline characteristics of participants according to overall group and sex
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All patients Women Men Men vs
n=359876 n=188221 n=171,655 women
Control Gout Control Gout Control Gout E)gout cases)
n=352534 n=7342 n=187647 n=574 n=164,.887 n=06768
Age, years (SD) 56.9 (8.0) 60.0 (6.9) 56.8 (7.9) 61.8 (5.9) 570 (8.1) 59.8 (6.9) 290x107"
BMI, kg/m2 (SD) 27.2 (4.6) 30.7 (4.9) 26.8 (5.0) 323 (6.6) 276 (4.) 306 (4.8) 713x107'°
Smoker, n (%)* 35,768 (102%) 661 (9.0%) 16,006 (8.6%) 59 (10.3%) 19,762 (12.0%) 602 (8.9%) 034
Alcohol frequency, n (%)*
Daily or almost daily 74,318 (21.1%) 2475 (33.7%) 1,696 (16.9%) 90 (15.7%) 42,622 (25.9%) 2385 (35.3%) 812x107'%
One to four times a week 85,226 (24.2%) 2026 (27.6%) 40,499 (21.6%) 86 (15.0%) 44,727 (27.1%) 1940 (28.7%)
Once or twice a week 93,145 (264%) 1668 (22.7%) 49,718 (26.5%) 130 (22.7%) 43,427 (264%) 1538 (22.7%)
Infrequent® 76,172 (21.6%) 838 (11.4%) 50,509 (26.9%) 178 (31.0%) 25,663 (15.5%) 660 (9.8%)
Never 23,442 (6.7%) 327 (4.5%) 15,108 (8.1%) 89 (15.5%) 8334 (5.1%) 238 (3.5%)
Diuretic use, n (%)* 28,722 (8.1%) 1210 (165%) 16,031 (8.5%) 206 (35.9%) 12,691 (7.7%) 1004 (14.8%)  6.05x 107°
Co-morbidities, n (%)*
Hypercholesterolaemia 42929 (16.7%) 2056 (28.2%) 18322 (134%) 180 (31.6%) 24,607 (205%) 1876 (27.9%)  0.06
Hypertension 89,575 (34.9%) 4161 (57.0%) 42,152 (30.8%) 364 (639%) 47,423 (395%) 3797 (564%)  595x107*
Peripheral vascular disease 616 (0.2%) 10 (0.1%) 358 (0.3%) 4 (0.7%) 258 (0.2%) 6 (0.1%) 147 %107
Angina 11,265 (4.4%) 662 (9.1%) 3603 (2.6%) 59 (10.4%) 7662 (6.4%) 603 (9.0%) 027
Myocardial infarction 8261 (3.2%) 21 (7.1%) 1604 (1.2%) 25 (4.4%) 6657 (5.5%) 496 (7.4%) 0.01
Heart failure 196 (0.1%) 44 (0.6%) 73 (0.1%) 5 (0.9%) 123 (0.1%) 39 (0.6%) 0.38
Arrhythmia 1952 (0.8%) 71 (1.0%) 950 (0.7%) 3 (0.5%) 1002 (0.8%) 68 (1.0%) 026
Stroke 4733 (1.8%) 254 (3.5%) 1895 (1.4%) 31 (54%) 2838 (2.4%) 223 (3.3%) 0.01
Transient ischaemic attack 1343 (0.5%) 59 (0.8%) 623 (0.5%) 5 (0.9%) 720 (0.6%) 54 (0.8%) 0.85
Renal failure 443 (0.1%) 108 (1.5%) 222 (0.1%) 8 (3.1%) 221 (0.1%) 90 (1.3%) 559%107*
Diabetes mellitus 16,108 (6.3%) 1005 (13.8%) 5846 (4.3%) 110 (19.3%) 10,262 (8.5%) 895 (13.3%) 001

BMI body mass index, SD standard deviation

*Smoking status, alcohol frequency, medication use and co-morbidity data collected via self-report
** Infrequent alcohol frequency defined as one to three times a month, or special occasions only

107%%, and in women 4.13 (2.05-8.32), P=7.06 x 10>,
Fig. 1).

SNP-sex interaction analysis

Evidence for gene-sex interaction was observed for
ABCG2 (rs2231142) and PDZKI1 (rs1471633), with the
interaction at ABCG2 driven by a larger effect in men,
and at PDZK1 driven by an absence of effect in women
(Fig. 2 and Table 2). For ABCG2, compared with women
without the effect allele (referent group), the OR was
1.62 (95% CI 1.35-1.94) in women with the effect allele,
11.99 (10.81-13.30) in men without the effect allele, and
28.65 (25.73—-31.90) in men with the effect allele (inter-
action P=4.59 x107°). For PDZKI, compared with
women without the effect allele (referent group), the OR
was 0.92 (95% CI 0.77-1.10) in women with the effect
allele, 10.54 (9.00-12.34) in men without the effect al-
lele, and 13.61 (11.68-15.85) in men with the effect al-
lele (interaction P=3.67 x10™%). For the other SNPs

tested, no significant gene-sex interactions were ob-
served (Table 2).

Similar findings were found in the sensitivity analysis
when excluding pre-menopausal women (Additional file
1: Table S4 and Additional file 2: Figure S1). When ana-
lysing for gene-sex interaction according to the number
of effect alleles present, interaction was also observed
for ABCG2 and PDZK1 in a similar pattern to that ob-
served in the primary analysis (Fig. 3 and Additional file
1: Table S5).

Discussion

In this large population of European ancestry, we have
identified gene-sex interactions for ABCG2 (rs2231142)
and PDZK1 (rs1471633) for gout risk, with the serum
urate-associated SNPs exerting a greater influence on
gout risk in men than in women. Consistent with prior
reports [1-3], women with gout were older, had a higher
body mass index, higher diuretic use, and more renal
failure compared with men with gout. Importantly, all
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Fig. 1 Association analysis of 30 serum-urate associated single-nucleotide polymorphisms for gout. Data are adjusted for age, body mass index,
diuretic use, and renal failure. *Experiment-wide significance at P < 0.0017
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analyses examining genetic associations included age,
body mass index, diuretic use, and renal failure within
the regression models.

Sex-specific differences for ABCG2 variants on serum
urate have been previously reported. A GWAS by
Dehghan et al. [16] which included a total of 26,714 par-
ticipants across the Framingham cohort study, the Rot-
terdam cohort study, and the Atherosclerosis Risk in
Communities (ARIC) study demonstrated significant
ABCG2 (rs2231142) gene-sex interactions for serum
urate in participants of the Framingham study (of which
almost all were of European descent) and for partici-
pants of European ancestry from the ARIC study. These
differences were not observed in the Rotterdam cohort
study or in African-American participants from the
ARIC study. A 2009 meta-analysis by Kolz et al. [13] in-
cluded 28,141 Europeans, and demonstrated that two
ABCG2 variants (rs2231142 and rs2199936) had signifi-
cant effects on raising serum urate with the effect almost

twice as strong in men compared with women. Differ-
ences for two PDZKI variants (rs12129861 and rs147
1633) were also noted with urate-altering effects higher
in men compared with women; however, the differences
were not significant. Kottgen et al. [10] demonstrated
similar differences in their large GWAS of > 140,000
Europeans for the rs2231142 variant with a serum urate
raising effect of 0.270 mg/dl in men vs 0.181 mg/dl
in women.

For gout risk, sex-specific differences for ABCG2 vari-
ants have also been described. The Population Architec-
ture using Genomics and Epidemiology (PAGE) study,
which examined the association between gout and the
ABCG2 rs2231142 SNP, found a higher risk for gout in
men than women in a population which included 13,783
European Americans, 4271 African Americans, and 1373
Mexican Americans [19]. In the Dehghan et al. [16]
meta-analysis, sex-specific differences for gout risk were
also noted for participants of European ancestry from
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Fig. 2 Association and interaction between serum urate-associated
genetic variants (for ABCG2 and PDZKT) and sex for gout risk
according to effect allele presence. Data are adjusted for age, body
mass index, renal failure, and diuretic use. Experiment-wide
significance is defined as P < 0.0017

the ARIC cohort with the rs2231142 variant exerting a
greater risk of gout in men compared with women (OR
2.03 (95% CI 1.61-2.56) vs 1.07 (0.72-1.57), interaction
P =0.004). Contrasting results were found in a European
and Eastern Polynesian population from New Zealand
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where gene-sex interactions for gout risk were not evi-
dent [20].

A causal mechanism for sex-specific differences with
the ABCG2 variant are unclear. There is strong evidence
that oestrogen and progesterone reduce the risk of
hyperuricaemia and development of gout due to their
uricosuric effects [21-24]. Several studies in cell lines
and animal models have shown that these hormones can
regulate the activity of the ABCG2 transporter protein
[25-28] and that these hormones may play a key role in
ABCG?2 transporter-mediated urate excretion at the level
of the gut or kidney.

We are the first to report significant sex-specific differ-
ences for the PDZKI variant (rs1471633) on gout risk.
The PDZK1 protein is not directly involved in urate
transport but has been shown to be a key regulatory
scaffolding protein in tethering other urate transporters
(e.g. ABCG2, SLC22A11, and SLC17A1) to the multimo-
lecular transportasome complex, and there is evidence
that this complex may be responsible for controlling
urate regulation at the level of the proximal renal tubule
[29-31]. Studies reporting the association of PDZK1 var-
iants with gout have demonstrated mixed findings.
Phipps-Green et al. [15] demonstrated an association be-
tween a PDZKI variant (rs1967017) and gout in a New
Zealand European and Polynesian sample set with the
effect allele exerting an increased risk of gout (OR 1.12
(95% CI 1.02-1.23)). The rs1967017 variant is the likely
causal variant, with the urate-increasing allele causing
increased PDZKI expression [32]. An association be-
tween the rs12129861 variant and gout was also found
in a Japanese population (OR 0.80 (95% CI 0.67-0.96))
[33]. Similar findings have also been seen in a male Han
Chinese population for both rs1967017 and rs12129861
PDKZ]1 variants [34]; however, this was not replicated
for rs12129861 in a larger case-control study involving
Han Chinese individuals [35]. These contrasting results
may be attributed to different study populations, sample
sizes, or differences in the number of men and women
in the sample sets.

For the other SNPs tested, gene-sex interactions were
not identified. This includes SLC2A9 for which signifi-
cant sex-specific differences for serum urate have been
previously reported [10, 11, 13, 16]. In our study,
SLC2A9 had a large effect on gout risk in both men and
women. However, we did not observe differential
sex-specific differences for SLC2A9 on gout risk in the
interaction analysis. This may be because a high propor-
tion (>90%) of participants in the analysis had at least
one SLC2A9 effect allele and, in particular, there were
very few women with gout who did not carry an effect
allele (n = 8). This may have affected the power to detect
sex-specific differences in gout risk for the SLC2A9 vari-
ant. However, our findings are consistent with Dehghan
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Table 2 Association and interaction between serum urate-associated single nucleotide polymorphisms and sex for gout risk

Gene SNP Effect Women Men Gene-sex
allele n=188221 n=171,655 interaction
Effect allele absent Effect allele present Effect allele absent Effect allele present
Referent OR OR (95% CI) OR (95% CI) OR (95% Cl)

Lodci replicated by Kottgen
ABCG2 152231142 T 1 1.62 (1.35-1.94) 11.99 (10.81-13.30) 28.65 (25.73-31.90) 459% 107
SLC2A9 1512498742 A 1 2 (2.05-8.30) 18.09 (8.85-36.98) 5562 (27.77-111.37) 042
GCKR rs1260326 T 1 142 (1.18-1.70) 13.80 (11.77-16.18) 19.08 (16.33-22.29) 0.80
SLC17A3 rs1165151 T 1 0.76 (0.64-091) 13.15 (11.38-15.20) 10.56 (9.16-12.17) 0.60
SLC22A12 rs478607 A 1 0.78 (0.48-1.28) 13.96 (8.44-23.09) 1057 (6.53-17.11) 0.90
PDZK1 rs1471633 A 1 092 (0.77-1.10) 10.54 (9.00-12.34) 1361 (11.68-15.85) 367x 107"
INHBE 13741414 T 1 0.82 (0.69-0.98) 13.57 (12.16-15.15) 11.06 (9.89-12.38) 092
SLC16A9 rs1171614 T 1 0.95 (0.80-1.12) 14.28 (12.78-15.96) 11.74 (1048-13.16) 0.1
SLC22A11 rs2078267 T 1 0.78 (0.65-0.95) 1359 (11.42-16.17) 1057 (8.93-12.51) 0.96
RREB1 1675209 T 1 1.23 (1.04-1.45) 14.28 (12.62-16.16) 15.74 (13.90-17.82) 0.23

Loci reported by Kottgen
PKLR rs11264341 T 1 0.82 (0.69-0.97) 13.09 (11.4-15.08) 1134 (9.87-13.02) 057
INHBB 1517050272 A 1 1.10 (0.93-1.32) 14.25 (12.26-16.57) 14.54 (12.54-16.85) 040
ACVR2A 152307394 T 1 0.99 (0.75-1.31) 14.72 (11.13-1948) 13.28 (10.14-17.40) 0.53
MUSTN1 rs6770152 T 1 0.96 (0.78-1.19) 15.29 (12.50-18.70) 12.75 (1049-15.51) 0.21
TMEM171 17632159 C 1 0.76 (0.65-0.90) 12.81 (11 4471) 11.31 (10.06-12.73) 0.1
VEGFA 15729761 T 1 0.99 (0.84-1.17) 13.89 (12.29-15.70) 13.03 (11.53-14.74) 0.55
MLXIPL rs1178977 A 1 1 (1.00-2.90) 17.96 (10.42-30.95) 22.86 (13.50-38.72) 030
PRKAG2 110480300 T 1 097 (0.82-1.15) 12.74 (11.31-14.35) 14.07 (12.50-15.85) 0.15
STC1 1517786744 A 1 6 (1.06-1.74) 17.59 (13.86-22.33) 17.64 (13.99-22.25) 0.02
HNF4G 152941484 T 1 1(0.92-1.33) 14.00 (11.89-16.49) 14.78 (12.59-17.34) 062
ASAH2 rs10821905 A 1 0.96 (0.80-1.15) 12.86 (11.57-14.29) 14.63 (13.12-16.33) 0.07
LTBP3 1642803 T 1 0.92 (0.77-1.10) 13.81 (11.80-16.16) 12.33 (10.58-14.38) 0.76
PTPNTT rs653178 T 1 0.85 (0.70-1.02) 1330 (11.24-15.74) 1152 (9.78-1357) 0.82
NRG4 1394125 A 1 2 (0.86-1.21) 13.06 (11.40-14.98) 14.17 (12.38-16.21) 0.52
IGFTR rs6598541 A 1 1.06 (0.89-1.25) 13.05 (11.38-14.96) 1448 (12.65-16.56) 0.59
NFAT5 rs7193778 T 1 1.12 (0.63-1.98) 20.20 (11.23-36.35) 1491 (844-26.35) 0.17
MAF 157188445 A 1 0.96 (0.82-1.14) 13.64 (12.01-15.48) 1291 (11.38-14.65) 0.84
HLF 157224610 A 1 0.90 (0.72-1.12) 13.76 (11.13-17.00) 12.13 (9.89-14.89) 0.88
C170RF82 152079742 T 1 092 (0.52-1.64) 10.34 (5.65-18.93) 12.54 (7.09-22.19) 038
PRPSAP1 rs164009 A 1 2(10 71) 17.00 (13.25-21.82) 17.27 (13.55-22.01) 0.05

Association and interaction data are reported according to effect allele presence or absence
Data are adjusted by age, body mass index, diuretic use, and renal failure

Experiment-wide significance is defined as P < 0.0017
Cl confidence interval, OR odds ratio, SNP single nucleotide polymorphism

et al

[16] who reported no evidence of a SLC2A9
gene-sex interaction for gout risk despite reporting a sig-
nificant differential sex-specific effect for serum urate.
Consistent with previous reports, SLC249 and ABCG2
variants exerted the highest risk for gout among the
whole group [10, 15, 16]. Unlike these reports, our study
shows that the SLC2A9 variant exerts a greater risk of

gout compared with the ABCG2 variant.

When

calculating gout risk based on allelic odds ratios, how-
ever, this increased risk between the two variants is re-
versed with the ABCG2 variant demonstrating an
increased risk of gout compared with SLC249 (Add-
itional file 1: Table S2).

We acknowledge the limitations of this study. Firstly,
our analysis was restricted to participants of European
ancestry and our results may not be generalizable to
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Fig. 3 Association and interaction between serum urate-associated
genetic variants (for ABCG2 and PDZKT) and sex for gout risk according
to the number of effect alleles present. Data are adjusted for age, body
mass index, renal failure, and diuretic use. Experiment-wide significance
is defined as P < 0.0017

populations of non-European ancestry. The age range
for recruitment into the UK Biobank means that youn-
ger people with early onset gout, and older participants
over the age of 70years were not included in the ana-
lysis. Despite the large size of the UK Biobank, the num-
ber of women with gout in our analysis was low, which
may have affected the power to detect small differences
between groups. Co-morbidity and medication use data
collected via the UK Biobank resource was through
self-report. This method of data collection may not
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accurately represent the true prevalence of co-morbid-
ities such as renal failure and medication use. However,
this imprecision is likely to have applied systemically to
all groups in the analysis. An assessment of sex-specific
differences in serum urate would strengthen the findings
of our study. However, serum urate measurements are
not currently available in the UK Biobank database.
Strengths of this study include the large sample size with
consistent methods of data collection, and comprehen-
sive assessment including patient interviews, hospitalisa-
tion records, and medical information.

Conclusions

In people of European ancestry, gene-sex interactions
for gout risk exist for ABCG2 and PDZK1, with the ef-
fect alleles exerting a greater influence on gout risk in
men than in women. In contrast, other serum urate-as-
sociated variants, including SLC2A9, do not demonstrate
gene-sex interactions for gout risk.
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