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Abstract

Background: Signs of inflammation in cerebrospinal fluid (CSF) of rheumatoid arthritis patients correlate positively with
fatigue, a central nervous system (CNS)-related symptom that can be partially suppressed by TNF blockade. This suggests
a possible role for CNS inflammation in arthritis that may be affected by TNF blockade. We therefore investigated the
effects of TNF blockade on the arthritis CSF proteome and how candidate proteins related to clinical measures of disease
activity and inflammation.

Methods: Mass spectrometry-based quantitative proteomic analysis was performed on CSF from seven polyarthritis
patients before and during infliximab treatment. Treatment-associated proteins were identified using univariate (Wilcoxon
signed rank test) and multivariate (partial least squares discriminant analysis (PLS-DA)) strategies. Relations between selected
candidate proteins and clinical measures were investigated using the Spearman correlations. Additionally, selected proteins
were cross-referenced to other studies investigating human CSF in a thorough literature search to ensure feasibility of our
results.

Results: Univariate analysis of arthritis CSF proteome revealed a decrease of 35 proteins, predominantly involved in
inflammatory processes, following TNF blockade. Seven candidate proteins, Contactin-1 (CNTN1), fibrinogen gamma
chain (FGG), hemopexin (HPX), cell adhesion molecule-3 (CADM3), alpha-1B-glycoprotein (A1BG), complement factor B
(CFB), and beta-2-microglobulin (B2M), were selected for further studies based on identification by both univariate and
multivariate analyses and reported detection in human CSF and known associations to arthritis. Decreased levels of FGG
and CFB in CSF after treatment showed strong correlations with both erythrocyte sedimentation rate and disability
scores, while CNTN1 and CADM3 were associated with pain.

Conclusion: Several immune-related proteins in the CSF of arthritis patients decreased during TNF blockade, including FGG
and CFB that both correlated strongly with systemic inflammation. Our findings stress that also intrathecal inflammatory
pathways are related to arthritis symptoms and may be affected by TNF blockade.
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Background
Central nervous system (CNS)-related symptoms such as
pain, fatigue and cognitive dysfunction are common fea-
tures of several chronic inflammatory disorders [1, 2] and
may persist despite achieving good control of peripheral
inflammation [3]. We have previously detected elevated
inflammatory mediators in cerebrospinal fluid (CSF) of
rheumatoid arthritis (RA) patients, where increased
interleukin-1beta (IL-1β) levels correlated positively with fa-
tigue [4]. Moreover, arthritis is associated with disturbed
central pain regulation as reviewed by Walsh et.al. [5]. To-
gether, this indicates a connection between arthritis, central
nervous mechanisms and global CNS symptoms.
Tumour necrosis factor alpha (TNFα) has been linked to

pain mechanisms as well as cognitive dysfunction [6, 7],
and TNF-blocking treatment, e.g. infliximab, is described to
ameliorate pain as well as fatigue in arthritis patients [8, 9].
TNF-blockade is an effective treatment with well-docu-
mented anti-inflammatory effects for several chronic in-
flammatory diseases, including different types of arthritis
[10–13]. Interestingly, infliximab treatment has been shown
to reduce levels of the pro-inflammatory cytokine
interleukin-6 (IL-6), in both serum of RA patients [14] and
serum and CSF of neuro-Behcet’s patients [15, 16] indicat-
ing possible effects on neuro-inflammation. Additionally,
animal studies of TNF blockade indicate considerable bene-
fits on CNS and CNS-related symptoms [6, 17, 18].
However, little else is known about the effects of TNF
blockade in the human intrathecal compartment or the
relationship between CSF effects, CNS-related arthritis
symptoms and peripheral inflammation.
Proteomic analysis of CSF as an approach to derive

biomarkers for neurological and inflammatory events
has been pursued over the last decade [19, 20]. However,
few proteomic studies of CSF directly relate to
CNS-related symptoms [21]. Using proteomic profiling
approaches thus enables identification of novel bio-
marker candidates.
In the current work, we investigate the effects of TNF

blockade (infliximab) on CSF protein levels in patients
with polyarthritis, and candidate protein relationships to
clinical measurements of disease activity, peripheral in-
flammation, function and patient-reported outcomes.

Methods
Patients and controls
CSF was obtained by lumbar puncture from ten female
polyarthritis patients attending the Rheumatology clinic
at Karolinska University Hospital, Stockholm, Sweden.
Samples were collected before (baseline) and after 8
weeks of infliximab treatment. For three patients, CSF
sample was collected from only one occasion. These
three patients were excluded from consecutive analyses.
Control CSF samples were acquired from ten age- and

sex-matched patients (median age 42 years, range 27–72
years) with non-inflammatory neurological diseases
(NINDC) including psychosis (n = 3), vertigo (n = 2), mi-
graine (n = 1), tension headache (n = 1), paresthesia (n = 1),
paraparesis (n = 1) and trigeminal neuralgia (n = 1),
undergoing diagnostic workup at the Neurology Clinic at
Karolinska University Hospital, Stockholm, Sweden. All
patients gave their informed written consent. The study
was approved by the local ethics committee at Karolinska
University Hospital and complies with the declaration of
Helsinki.

Treatment schedule and CSF handling and quality control
A standard treatment schedule was followed with intraven-
ous infliximab given at weeks 0, 2 and 6. Standard doses of
3mg/kg were used. In one patient, the treatment was tem-
porarily withdrawn after the second infliximab infusion be-
cause of a knee arthroplasty. In this patient, infliximab was
given at weeks 0, 2 and 14, with sampling at baseline and
after week 14.
Acquired CSF samples were immediately centrifuged,

and the pellet and supernatants were recovered and stored
in − 70 °C until used as described previously [22, 23].
Acquired CSF samples were visually inspected for

blood contamination, and all samples were found to be
clear and uncoloured. An additional erythrocyte count
was performed on an aliquot taken from each sample
prior to centrifugation. Seven out of nine baseline sam-
ples contained zero erythrocytes/μl while two baseline
samples contained one and 13 erythrocytes respectively.
For the follow-up samples, 8 out of 9 samples contained
zero erythrocytes/μl while one sample contained 341
erythrocytes/μl. The sample containing 341 erythro-
cytes/μl belonged to a patient without paired CSF
samples and was not included in further analysis.

Clinical assessments
Disease activity, pain and health assessment
Disease Activity Score 28 (DAS28) is a composite meas-
ure of the number of tender and swollen joints in 28 lo-
cations, patient-estimated global health on a 100-mm
visual analogue scale (VAS patient global health) and
erythrocyte sedimentation rate (ESR) [24]. It was used to
assess disease activity in patients at baseline and week 8
of CSF sampling. Using a 100-mm visual analogue scale
(VAS-pain) ranging from “no pain” to “worst imaginable
pain”, patients were asked to rate their overall percep-
tion of pain [25].
Health assessment questionnaire (HAQ) is a question-

naire addressing patient-reported outcomes, in its full
form assessing five dimensions: disability, pain, medication
effects, cost of care and mortality [26]. In this study,
the short form HAQ only addressing disability is used at
each sampling occasion.
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Proteomic profiling
Sample preparation
Protein concentration of CSF samples was determined
using NanoDrop™ 2000 Spectrophotometer (Thermo
Fisher Scientific). Aliquots of 50 μg total protein of CSF
samples were mixed with 50 μl of 0.05M triethyl ammo-
nium bicarbonate (TEAB) buffer, reduced by 0.1M
tris(2-carboxyethyl) phosphine hydrochloride (TCEP) for
1 h at 37 °C and alkylated using 0.5M iodoacetamide for
45 min at RT in darkness. Peptides were obtained by di-
gestion using trypsin (1.50 enzyme:substrate) at 37 °C
overnight (ON). Peptides were desalted by Pierce™ C18
Tips according to the manufacturer’s instructions and
dried in speed-vac prior LC-MS/MS analysis.

LC-MS/MS analysis
Analysis of the peptide mixtures was performed by Dionex
HPLC system (Thermo Scientific) equipped with Acclaim
PepMap™ RSLC (75 μm× 50 cm) column coupled to the
Bruker CaptiveSpray electrospray source installed onto
the Bruker Daltonics impact II™ oQTOF instrument. Each
acquired spectrum was calibrated internally using sodium
formate cluster ions by injection of the calibration mixture
in the beginning of LC gradient.

Protein identification and quantification
Acquired data were analysed against human protein
sequences from Uniprot (downloaded 2015.01.17) using
Mascot search engine (Matrix Science) incorporated into
the ProteinScape™ platform (Bruker). In Mascot searches,
tolerance of 10 ppm for precursor masses and 0.2 Da for
fragment ions were specified. Searches were performed
with trypsin specificity, two missed cleavages were allowed,
and carbamidomethylation was set as static modification
and oxidised methionine as dynamic modification. Identi-
fied proteins were filtered to a 1% FDR cut-off.
Normalised spectral abundance factor (NSAF) was cal-

culated on the basis of peptide spectral counts for each
protein detected in more than two arthritis samples.
NSAF values were used in further analyses.

Statistical analysis
For univariate analysis of proteomic data, comparisons
between control (NINDC) and arthritis groups were
made by Mann Whitney U test and between paired arth-
ritis samples by Wilcoxon signed rank test. Associations
to clinical parameters were calculated using the Spear-
man correlations. All of the univariate data analyses
were calculated using SPSS v. 23 (IBM, Armonk, NY,
USA) with significance level set at p < 0.05. Data are
presented as median (interquartile range) unless stated
otherwise.
Multivariate data analyses (principal component ana-

lysis (PCA) and partial least squares discriminant

analysis (PLS-DA)) were performed using SIMCA P+
version 12 (MKS Data Analytics Solution, Umeå,
Sweden). Prior to analysis, the data was mean centred
and scaled to unit variance. Proteins important for the
separation of patient CSF samples before and after treat-
ment using the PLS-DA model species were selected
based on a combination of variable influence in projec-
tion (VIP ≥ 1.5) and scaled loadings (p (corr) ≥ |0.5|).

Results
Short-term effects of infliximab treatment on systemic
inflammation and clinical measures of function, pain and
disease activity in polyarthritis patients
Ten polyarthritis patients were here followed during the
first 8 weeks of infliximab treatment. At two sampling occa-
sions (baseline and after 8 weeks of infliximab treatment),
CSF samples as well as information on peripheral inflam-
matory status (C-reactive protein (CRP) and erythrocyte
sedimentation rate (ESR) levels), disease activity score 28
(DAS28), visual analogue scale pain (VAS-pain) and
functioning (health assessment questionnaire (HAQ)) were
acquired. On a group level, disease activity was decreased
during the infliximab treatment (DAS28, 5.1 (3.9–6.2) BL
vs. 4.4 (3.2–5.7) IFX, Z = − 2.03, p = 0.042). Comparing
baseline (BL) and week 8 (IFX) measures in all samples, sig-
nificant treatment effects were observed also on systemic
inflammatory parameters (CRP, 19.8 (5.1–62.1) mg/L BL vs.
1.7 (0.7–6.2) mg/L IFX, Z=− 2.67, p= 0.008, and ESR, 35.5
(16.3–90.0) BL vs. 19.5 (11.3–43.3) IFX, Z=− 2.10, p= 0.036)
as well as clinical assessments (VAS-pain, 75 (57–80) mm
BL vs. 22 (6–75) mm IFX, Z= − 2.03, p= 0.043; HAQ 1.5
(0.9–1.7) BL vs. 0.9 (0.8–1.5) IFX, Z=− 2.20, p= 0.028).
Patient characteristics are described in Table 1.

Short-term infliximab-induced effects on the CSF
proteome of arthritis patients identified by proteomic
profiling
Intrathecal effects of TNF-blockade on CSF proteome in
patients with polyarthritis at the baseline and after 8
weeks of infliximab treatment (n = 7) were investigated.
Normalised spectral abundance factor (NSAF) was cal-
culated for the 306 proteins that were quantified. A full
list of the identified proteins and their statistical results
are provided in Additional file 1: Table S2. Univariate
Wilcoxon signed rank test revealed that intrathecal
levels of 31 of the 306 identified proteins were signifi-
cantly altered after infliximab treatment (p < 0.05)
(Additional file 1: Table S1). Among the 31 significantly
altered proteins, several are involved in inflammatory
processes including proteins belonging to the comple-
ment and coagulation systems. Interestingly, none of all
the significantly changed proteins were increased;
instead, all were reduced following infliximab treatment.
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Next, we performed a multivariate data analysis (principal
component analysis (PCA)) on all proteins quantified by
proteomics (n = 306). This analysis aimed to identify poten-
tial clustering of the patient samples at baseline and after
infliximab treatment as well as clustering of arthritis and
control (NINDC) samples. In our PCA model, 41% of the
variance is explained by PC1 (30%) and PC2 (11%). As
shown in Fig. 1, there are indications of clustering, with
more pronounced separation between arthritis and NINDC
control samples than between arthritis samples at baseline
and after infliximab treatment. To focus on the difference

between baseline and infliximab-treated proteomic pro-
files, a supervised partial least squares discriminant
analysis (PLS-DA) model (R2Ycum, 2PC = 0.98, R2Xcum,

2PC = 0.42, Q2Ycum, 2PC = 0.62; CV-ANOVA > 0.05) was
used to identify the proteins contributing most to the
separation between arthritis CSF samples at baseline
and after infliximab treatment (Additional file 2: Figure
S1). Proteins selected (n = 27) (Additional file 1: Table
S3) give the highest contribution to the potential differ-
ence between arthritis CSF samples before and after
TNF blockade.

Table 1 Demography and clinical characteristics of polyarthritis patients (baseline and after 8 weeks of infliximab treatment)

ID Age Sex Diagnosis Additional
treatments

Baseline After infliximab treatment

DAS28 ESR (mm) CRP (mg/L) TJC SJC DAS28 ESR (mm) CRP (mg/L) TJC SJC

1 43 F RA+ M, N, Pa 3.80 18 5.4 1 1 3.82 15 ND 1 0

2 34 F RA− M, N, Pa 4.77 18 3.0 4 4 4.39 29 2.3 4 0

3 74 F RA− M, Pr, Pa 7.50 90 93.3 13 12 6.67 50 43.3 13 11

4 35 F JCA M, Pr, N 4.10 11 7.6 7 4 2.96 10 7.4 4 0

5 41 F JCA M, Pr, Pa 2.35 10 4.0 0 0 ND ND 0.5 ND ND

6 26 F AS M, Pr, N ND 90 56.5 ND ND ND 24 1.7 ND ND

7 52 F PsA M, N 6.34 90 78.8 6 4 4.73 48 ND 4 2

Patients without paired CSF samples

8 31 F RA+ M, N, Pa ND 41 19.8 15 15 ND 12 0.5 ND ND

9 51 F RA+ M, A 5.94 30 15.6 12 3 ND 11 1.6 1 2

10 61 F PsA M, N, Pa 5.51 63 28.6 2 4 ND ND 0.9 0 0

A azathioprine, AS ankylosing spondylitis, CRP high-sensitivity C-reactive protein, DAS28 Disease Activity Score 28, ESR erythrocyte sedimentation rate, F female,
JCA juvenile chronic arthritis, M methotrexate, N non-steroidal anti-inflammatory drug, ND not determined, Pa paracetamol, Pr prednisolone, PsA psoriatic arthritis,
RA− rheumatoid factor negative rheumatoid arthritis, RA+ rheumatoid factor positive rheumatoid arthritis, SJC swollen joint count, TJC tender joint count

Fig. 1 PCA score plot. A score plot based on PCA of label-free proteomics data including NSAF values of all detected proteins (n = 307) from
paired CSF samples. Samples from polyarthritis patients at baseline (P-BL, grey triangles) and after 8 weeks of infliximab treatment (P-IFX, black
squares) are shown as well as matched NINDC control CSF samples (open circles). MS data for one patient were excluded due to very high values
of all detected proteins (pat-ID no 7)

Estelius et al. Arthritis Research & Therapy           (2019) 21:60 Page 4 of 11



Of these 27 proteins, the following 11were also identi-
fied as significantly altered in CSF of arthritis patients
after infliximab treatment by univariate analysis of the
label-free proteomics data: cell adhesion molecule 3
(CADM3), Insulin-like Growth Factor-Binding Protein 7
(IGFBP7), Protein Tyrosine Phosphatase Receptor Type
N (PTPRN), Apolipoprotein H (APOH), Alpha-1-B
Glycoprotein (A1BG), Fibrinogen gamma chain (FGG),
Beta-2-microglobulin (B2M), Complement C4B(C4B),
Complement C7 (C7), Complement Factor B (CFB) and
hemopexin (HPX) (Table 2).
Based on the significant contribution to the separation

in the PLS-DA model, significant alterations with inflixi-
mab treatment detected by univariate analysis and
known associations to arthritis FGG, CADM3, HPX,
CNTN1, A1BG, B2M and CFB were selected for closer
studies and investigation of relations to clinical data.
Additionally, all proteins identified as affected by

infliximab treatment by uni- and/or multivariate analysis
from label-free proteomics data were analysed by the
STRING online tool (v10.5) (Fig. 2) in order to reveal
interactions among the identified proteins. Most interac-
tions were described between proteins belonging to the
complement and coagulation systems.

Relative levels of CSF-proteins identified as regulated by
infliximab treatment associate with systemic
inflammation, function, pain and disease activity
When analysing the relations of identified candidate
proteins to clinical measures, strong correlations were
observed between the fold change of FGG and the
fold change of ESR (rs = 1.00, p < 0.001). Also, the fold
change of CFB correlated to the fold change in ESR
(rs = 1.00, p < 0.001). Strong Spearman correlations
were also observed between the fold change in both
FGG and CFB and change in HAQ score during
treatment (rs = 1.00, p < 0.001; rs = 1.00, p < 0.001, re-
spectively). Additional correlations were also observed
between both baseline CNTN1 and CADM3 and
change in VAS-pain during treatment (rs = 0.90, p =
0.037; rs = 0.90, p = 0.037, respectively). Scatter plots
are displayed in Fig. 3.
Taken together, our study shows that infliximab treat-

ment not only affect systemic inflammation but also as-
sociate with changes in inflammatory markers in the
CSF of arthritis patients, which may help explain the
ability ofinfliximab and other TNF-blocking agents to
relieve CNS-related symptoms.

Discussion
The present study employed MS-based quantitative pro-
teomics to identify CSF proteins that were affected dur-
ing infliximab treatment. Initially, 31 proteins in CSF of
the polyarthritis patients were found to be reduced with

infliximab treatment. We then utilised multivariate ana-
lysis methods on all identified proteins (n = 306) apply-
ing stringent criteria to assess the proteins contributing
the most to possible treatment-related differences, which
included 11 of the 31 proteins affected by infliximab
treatment (Additional file 1: Table S3). The reported
functions of the majority of these 11 proteins are related
to the immune system, including both innate and adap-
tive responses such as cell adhesion, complement, and
coagulation systems. This is in line with TNF blockade
being used as an anti-inflammatory treatment, and its
peripheral anti-inflammatory effects are well docu-
mented in literature [8, 9, 14], and as shown in the
present study, the levels of both ESR and CRP as well as
disease activity scores were reduced after treatment.
Biologic macromolecules such as infliximab and TNFα

do not readily pass the blood-brain barrier (BBB); how-
ever, there is a saturable receptor-assisted transport sys-
tem for TNFα across the BBB [27]. Additionally,
pro-inflammatory cytokines such as TNFα can alter BBB
permeability through inflammatory damage to endothe-
lial cells of the brain microvascular system [28]. The
relative ratio of albumin between CSF and plasma is
commonly used to evaluate BBB integrity [29, 30] and
were reported normal for all patients throughout the
present study. Interestingly, peptide sequences matching
the infliximab antibody were identified in the tested
polyarthritis CSF samples after infliximab treatment by
the MS-based proteomics applied in this study (data not
shown). One alternative route for passage of macromole-
cules entering the CNS could be at sites of modified
BBB integrity, such as the circumventricular organs [31].
The monoclonal human-mouse chimeric antibody

infliximab is one of the available biologic treatments
binding TNFα. Although TNF blockade and other bio-
logic drugs have been established as treatment strategy
for more than a decade in chronic arthritis [10–13],
much remain unknown regarding the effect of these
drugs on central nervous mechanisms.
Spinal fluid samples are always very precious since the

lumbar puncture procedure is rarely performed on arth-
ritis patients. In this unique study, we have access to
CSF from the same patients at two time points, before
and after anti-TNF treatment enabling us to address
these questions by mass spectrometry-based analysis.
With this study, we are able to show that the effect of
TNF-blockade is not limited to the synovium and sys-
temic features, such as adhesion molecule regulation on
endothelium [32], but also exerts effects in the CSF,
which may help explain why this treatment strategy is able
to ameliorate CNS-related symptoms to some extent. In
support of this, animal studies of experimental arthritis
have reported the ability of TNF blockade to exert sub-
stantial effects in the CNS, including a reduction of
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astrocyte activation and TNFα-dependent activation of
stress-induced kinases that are both coupled to altered
nociception [17, 18].
Our proteomics data is showing good overlap with

data in cross-referenced studies (Additional file 2: Figure
S2). As shown in Additional file 1: Table S4, all of the
seven selected proteins identified as infliximab regulated
by both uni- and multivariate analysis were found to be

overlapping with proteins identified in at least one of the
cross-referenced studies investigated. CNTN1, HPX and
B2M were additionally reported as differentially
expressed or regulated in CSF of the cross-referenced
diseases. Taken together, this indicates their possible
importance for disease features.
Fibrinogen gamma chain (FGG) was identified as sig-

nificantly downregulated after infliximab treatment. This

Table 2 Proteins important for separation between patients before and after infliximab treatment

Protein name Gene
symbol

Accession Univariate
analysis

Multivariate
analysis

Process Suggested
function(s)

Fold
change†

Z
score

p
value

VIP p
(corr)

Cell Adhesion
Molecule 3

CADM3 Q8N126 − 0.68 − 1.992 0.046 2.0 0.7 Cell adhesion Overexpressed in murine microglia
after bacterial challenge and may be
involved in development of depressive
symptoms following immune challenge. [43]

Insulin-like
Growth Factor-
Binding Protein 7

IGFBP7 Q16270 − 0.50 − 2.201 0.028 1.6 0.7 Cell adhesion Upregulated in spinal cord during EAE
and suggested to be a regulator of
oligodendrocyte differentiation. [54]

Protein Tyrosine
Phosphatase,
Receptor Type N

PTPRN Q16849 − 0.49 − 2.201 0.028 1.6 0.6 Cell signalling Important for proper secretion of hormones
(insulin) and neurotransmitters [55]

Apolipoprotein H APOH P02749 − 0.32 − 1.992 0.046 1.7 0.8 Coagulation May be associated with brain atrophy in
healthy individuals [56]. Is the main antigen
in antiphospholipid syndrome and may be
associated with CNS related disease in these
patients [57]

Fibrinogen
gamma chain

FGG P02679 − 0.61 − 2.201 0.028 1.5 0.5 Immune
response,
Acute phase
protein

Important for proper T cell functioning
and neutrophil pathogen clearance [37].
Regulator of microglia activation which may
be important in pathogenesis of experimental
autoimmune encephalomyelitis [58]

Alpha-1-B
Glycoprotein

A1BG P04217 − 0.39 − 2.201 0.028 2.6 0.7 Immune
response,
Acute phase
protein

–

Beta-2-
Microglobulin

B2M P61769 − 0.44 − 1.992 0.046 1.7 0.8 Immune
response,
Adaptive
immuntity

Increased in circulation in chronic fatigue
syndrome [59] and identified as important
in CSF of female chronic widespread pain
patients [60]. CSF levels of B2M is suggested
to reflect immune activation and lymphoid
cell turnover in the CNS [61]

Complement C7 C7 P10643 − 0.48 − 2.201 0.028 2.1 0.5 Immune
response,
Innate
immunity

–

Complement
Factor B

CFB P00751 − 0.38 − 1.992 0.046 1.7 0.6 Immune
response,
Innate
immunity

Differentially expressed in AD CSF [62]

Complement
C4B (Chido
Blood Group)

C4B P0C0L5 − 0.37 − 2.201 0.028 2.1 0.5 Immune
response,
Innate
immunity

Differentially expressed in CSF of AD patients
[62] and elevated in CSF of MS patients with
active disease [63]

Hemopexin HPX P02790 − 0.33 − 1.992 0.046 1.7 0.7 Oxidative
stress
protection

Neuroprotective in stroke and intracerebral
haemorrhages [64]. Increase in CSF following
yeast-induced inflammation [65]

†Fold change is calculated as “(sample after infliximab − baseline sample)/baseline sample”. Proteins were identified in CSF of polyarthritis patients using label-free
proteomics and uni- and multivariate data analysis
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Fig. 2 STRING (v.10.5)-based interaction analysis of the proteins identified by uni- and multivariate analysis as affected by infliximab treatment
based on label-free proteomics data

Fig. 3 Spearman correlations between clinical measures and fold change or baseline NSAF values from label-free proteomic analysis of
polyarthritis CSF samples at baseline and after 8 weeks of infliximab treatment (n = 5). a Fold change in ESR correlates positively to fold change in
FGG and CFB. b Fold change in HAQ score correlates positively with fold change of FGG and CFB. c Fold change in VAS-pain correlates positively
to NSAF values of CNTN1 and CADM3 at baseline. Fold change was calculated according to the formula “(samples following 8 weeks of
imfliximab treatment − baseline samples)/baseline samples” and p < 0.05 was considered significant
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is an intriguing fact since FGG was also found to be
decreased in arthritis plasma following TNF blockade
(etanercept) [33] confirming the reasonability of our
observation. Fibrinogen is involved in blood clotting, but
has also been implicated as an inflammatory mediator in
several diseases, including rheumatoid arthritis, multiple
sclerosis (MS) and Alzheimer’s disease (AD) [34]. FGG
has additionally been reported to be expressed at higher
levels in rheumatoid arthritis synovial fluid [35], some-
thing that has also been shown for Alpha-1-B Glycopro-
tein (A1BG) [36], although little else is known about
A1BG function. FGG showed strong association to both
ESR levels and HAQ scores (Fig. 3) in our study where a
more pronounced reduction of FGG after treatment
corresponded to more pronounced reduction of ESR
and HAQ reflecting the inflammatory nature of FGG
and the beneficial effects of an overall reduced inflam-
matory burden in the patient.
Animal studies have shown that fibrinogen gamma can

bind to the CD11b/CD18 complex often referred to as
macrophage antigen complex-1 (Mac-1) [37], commonly
expressed on immune cells including microglia [38]. En-
gagement of Mac-1 has been shown to modulate the in-
flammatory response of the Mac-1 expressing cell,
although the exact nature of the modulation seems to
depend on the cell type. In microglia, blocking of Mac-1
has been shown to inhibit H2O2 production in response
to diesel exhaust particles, a known microglial inflamma-
tory response inducer, thereby protecting against neur-
onal loss [39]. In Parkinson’s disease, Mac-1 expression
on microglia has similarly been linked to prostaglandin
E2 production, microgliosis, and subsequent neuronal
loss [40]. In light of this, there may be a potential role of
CSF-FGG in modulating microglial activation and
inflammatory responses via interaction with Mac-1,
which may affect CNS-related symptoms.
Regarding the other candidate proteins identified in

this study, Contactin-1 (CNTN1) has been shown to be
significantly upregulated after electric stimulation of the
spinal cord in neuropathic pain patients [41]. CNTN1 is
a protein involved in cell adhesion, important for forma-
tion of axon connections, and has been implicated in
long-term depression [42]. Interestingly, also for cell
adhesion molecule 3 (CADM3), another cell adhesion
protein, relation to depressive symptoms has been re-
ported [43]. In the present study, both proteins were
reduced during infliximab treatment, suggesting that the
regulation of these proteins is inflammation dependent.
No association was found between the baseline levels of
these proteins and inflammatory parameters; instead, an
association with the magnitude of pain suppression was
observed (Fig. 3). In line with this, animal studies have
demonstrated that CNTN1 accumulates in axotomized
dorsal root ganglion neurons, associates with the sodium

channel Na(v)1.3 and may contribute to its hyper excit-
ability involved in neuropathic pain signalling [44].
Taken together, we demonstrate that both CNTN1 and
CADM3 may be involved in intrathecal processes
regulating pain also in arthritis patients.
Hemopexin (HPX) is known to protect cells from oxi-

dative stress which is frequently generated during an in-
flammatory response [45, 46]. Although HPX was
significantly downregulated after infliximab treatment,
no associations to clinical parameters were observed for
this protein in our data. Changes in HPX level may be a
consequence of the overall reduced inflammation in the
treated patients, as it is also an acute phase protein.
The beta-2-microglobulin (B2M) protein is normally

associated with the heavy chain of major histocompati-
bility complex, class I (MHC-I), which is responsible for
antigen presentation on almost all nucleated cells [47].
However, during an inflammatory response, the circulat-
ing levels of free B2M protein are known to increase and
increased CSF levels of B2M have been observed in
painful disc degeneration [48]. In line with this, we ob-
serve increased baseline levels in CSF of our arthritis
patients compared to controls, although this difference
is not significant (data not shown), adding another indi-
cation of ongoing inflammation in the CSF of arthritis
patients. B2M serum levels have also been reported to
correlate with disease activity measures in rheumatoid
arthritis [49]; however, no such correlation was found
for CSF in the present study which might be due to our
low number of study participants.
Complement factor B (CFB), also among the selected

proteins for further investigation, was only identified in
one of the cross-referenced studies. Identification of this
protein in our study is still likely to be a true observa-
tion, although false positivity cannot be excluded. One
explanation for its low number of overlapping observa-
tions could be that it is more specific to arthritis-related
processes rather than to general inflammatory processes.
This is the first study investigating the proteome in CSF
of autoimmune arthritis wherefore overlap with other
multiple studies may be absent for arthritis-specific pro-
teins. CFB was found to be significantly reduced follow-
ing infliximab and like FGG shows strong associations
to reduction of ESR and HAQ score following treatment.
CFB is a circulating complement factor involved in the
complement cascade of the alternative pathway [50]. In-
hibition of the alternative pathway by blocking CFB ac-
tivity has been shown to be neuroprotective in an EAE
mouse model [51]. TNFα have additionally been
reported as an important regulator of CFB expression in
macrophages [52] and human peripheral blood mono-
nuclear cells (PBMCs) showing a dose-dependent CFB
production upon TNFα treatment [53]. Considering
these facts, it is then logical to attribute the reduced
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CFB levels observed in the CSF of our arthritis patients
to the reduced TNFα levels induced by the infliximab
treatment.
This investigation has several limitations that need to

be taken into account when interpreting the results. The
sample number is small, and the identified proteins
should be recognised as potential markers in need for
subsequent validation concerning significance in a gen-
eral context. The fact that the included patients have dif-
ferent diseases and treatments may be of importance
concerning differences in genetic predisposition and
pathogenesis. On the other hand, the comparisons with
only female patients and controls may decrease the pos-
sibility of heterogeneity in the results. Moreover, we
included only patients with prednisolone doses below
10mg. Strengths of the study include the unique investi-
gation of CSF in polyarthritis patients and the potential
to use serial sampling to investigate impact on CNS
immune mechanisms and symptoms by a routinely
prescribed biologic agent.
Taken together, we found that several proteins with in-

flammatory function were decreased in arthritis CSF after
infliximab treatment, including proteins with additional
neuro-immunomodulatory function such as FGG, CNTN1
and CADM3. We further show that in spite of the small
and heterogeneous study cohort, several correlations
between selected candidate proteins and clinical measures
were observed.

Conclusions
In conclusion, using proteomic profiling of CSF in polyar-
thritis, we have identified several intrathecal proteins with
known inflammatory and/or neuro-immune function that
were affected by TNF-blocking treatment. These results
are in line with earlier findings of increased inflammatory
mediators in CNS of both experimental and human arth-
ritis [4] providing further evidence that the CNS is an
important location to investigate in order to acquire a full
understanding of the pathophysiology of arthritis and
arthritis related symptoms.
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