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Abstract
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Background: Despite their efficacy in the treatment of chronic inflammation, the prolonged application of therapeutic
glucocorticoids (GCs) is limited by significant systemic side effects including glucocorticoid-induced osteoporosis
(GIOP). 11B-Hydroxysteroid dehydrogenase type 1 (113-HSD1) is a bi-directional enzyme that primarily activates GCs in
vivo, regulating tissue-specific exposure to active GC. We aimed to determine the contribution of 113-HSD1 to GIOP.

Methods: Wild type (WT) and 113-HSD1 knockout (KO) mice were treated with corticosterone (100 pg/ml, 0.66%
ethanol) or vehicle (0.66% ethanol) in drinking water over 4 weeks (six animals per group). Bone parameters were
assessed by micro-CT, sub-micron absorption tomography and serum markers of bone metabolism. Osteoblast and
osteoclast gene expression was assessed by quantitative RT-PCR.

Results: Wild type mice receiving corticosterone developed marked trabecular bone loss with reduced bone volume
to tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Th.N). Histomorphometric analysis
revealed a dramatic reduction in osteoblast numbers. This was matched by a significant reduction in the serum
marker of osteoblast bone formation P1NP and gene expression of the osteoblast markers Alp and Bglap. In

contrast, 113-HSD1 KO mice receiving corticosterone demonstrated almost complete protection from trabecular
bone loss, with partial protection from the decrease in osteoblast numbers and markers of bone formation relative to

Conclusions: This study demonstrates that 113-HSD1 plays a critical role in GIOP, mediating GC suppression of
anabolic bone formation and reduced bone volume secondary to a decrease in osteoblast numbers. This raises
the intriguing possibility that therapeutic inhibitors of 113-HSD1 may be effective in preventing GIOP in patients
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Introduction

Therapeutic glucocorticoids (GCs) show marked effi-
cacy in the treatment of chronic inflammatory condi-
tions. Unfortunately, prolonged exposure to GCs
results in severe adverse metabolic side effects includ-
ing osteoporosis, insulin resistance and obesity, se-
verely limiting their long-term therapeutic application
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[1-3]. Glucocorticoid-induced osteoporosis (GIOP) is
common in patients receiving therapeutic GCs with
30-50% of patients developing decreased bone min-
eral density and increased fracture risk within
6 months [4-6]. Several mechanisms have been pro-
posed whereby GCs cause loss of bone mineral dens-
ity and deterioration in bone architecture. Chief
amongst these is the direct inhibition of the osteoid-
forming osteoblasts within bone, as evidenced by a
marked and rapid suppression of serum PINP and
osteocalcin in patients receiving the therapeutic GC
prednisolone [7]. In addition, GCs cause increased
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bone resorption by supporting the survival, differentiation
and activation of osteoclasts in vivo [8—12]. Additional
mechanisms whereby GCs drive bone loss include the
suppression of anabolic sex steroids as well as calcium and
vitamin D metabolism and induction of myopathy that
collectively contribute to systemic bone loss [13, 14].

11B-Hydroxysteroid dehydrogenase type 1 (11pB-
HSD1) is a bi-directional enzyme that, in the presence
of the NADPH-generating enzyme H6PDH, primarily
activates GCs (cortisone to cortisol in humans, 11-
dehydrocorticosterone to corticosterone in mice) in
vivo and determines their tissue-specific exposure
[15]. In response to therapeutic glucocorticoids, such
as hydrocortisol and prednisolone, renal inactivation
competes with hepatic reactivation of steroids, provid-
ing both active and inactive glucocorticoid substrates
in the circulation for tissue-specific metabolism by
11B-HSD1 [16, 17]. Pre-receptor metabolism of GCs
by this enzyme has been shown to be critical in me-
diating insulin resistance, obesity, skin thinning and
hepatic steatosis in mice following exposure to both
active and inactive GCs [18]. This is in part mediated
through renal inactivation of active GCs by 11p-hy-
droxysteroid dehydrogenase type 2 (113-HSD2), which
are then recycled within peripheral target tissues ex-
pressing 113-HSD1.

Currently, the contribution of 113-HSD1 to GIOP is
poorly understood despite its expression being reported in
primary osteoblasts and bone, where it is potently upregu-
lated by inflammation [19-23]. In this study, we employed
a murine model of exogenous oral corticosterone delivery,
known to closely mimic the kinetics of clinical GC ther-
apy, in wild type (WT) and global 113-HSD1 knockout
(KO) mice to delineate the contribution of 113-HSD1 to
GIOP, and demonstrate its critical role in mediating the
effects of therapeutic GCs on bone [24].

Materials and methods

11B-HSD1 KO mouse model

Experiments were carried out at the University of
Birmingham, UK (project licence number P51102987),
following strict guidelines governed by the UK Animal
(Scientific Procedures) Act 1986 and were approved by
the local ethics committee (BERSC: Birmingham Ethical
Review Subcommittee). 113-HSD1 KO mice were gener-
ated as previously described through crossing HSD11B1
floxed mice with the ZP3-Cre expressing strain to
achieve germline deletion of 11B-HSD1 [25]. Nine-week-
old male WT or 11B-HSD1 KO littermate mice on a
C57BL/6] background had ad libitum access to standard
chow and drinking water supplemented with either cor-
ticosterone (Cort) (100 pg/mL, 0.66% ethanol), or vehicle
(0.66% ethanol) for 4 weeks (six animals per group, 24
animals in total). Treatments were replaced twice
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weekly. At the end of the experiment, 13-week-old ani-
mals were culled by cervical dislocation following a car-
diac bleed under terminal anaesthetic and tissues
excised, weighed and fixed in 4% formalin or snap-fro-
zen in liquid nitrogen for later analyses.

Analysis of mRNA abundance

Expression of specific mRNAs was determined using Taq-
Man® Gene Expression Assays (Thermo Fisher Scientific,
Loughborough, UK). RNA was extracted from homoge-
nised tibia. Briefly, whole tibias were removed from the
hind limb ensuring complete removal of soft tissue under a
dissection microscope. The heads of bone were removed at
the metaphysis, and the bone marrow was flushed with a
syringe. The diaphysis of the tibia was powdered in liquid
nitrogen in a sterilised pestle and mortar. mRNA isolation
was then performed on the resulting homogenate using an
innuPREP RNA Mini Kit (Analytikjena, Cambridge, UK) as
per the manufacturer’s instructions. Aliquots containing
1 pg of RNA were then reverse transcribed using random
hexamers according to the manufacturer’s protocol
(4311235, Multiscribe™, Thermo Fisher Scientific) to gener-
ate ¢cDNA. The levels of murine 11B-HSD1 (Hsd11bl),
RUNX2 (Runx2), OPG (Tnfrsfl1b), RANKL (Tnfsfll),
osteocalcin (Bglap), cathepsin K (Ctsk), alkaline phosphat-
ase (Alp) and sclerostin (Sost) were assessed to determine
expression of genes that define osteoblasts and osteoclasts
and contribute to the balance of bone metabolism. Gene
expression was determined using species-specific probe sets
for real-time PCR on an ABI7500 system (Applied Biosys-
tems, Warrington, UK). Final reactions contained 2X Taq-
Man PCR mastermix (Life Technologies), 200 nmol
TagMan probe and 25-50ng c¢cDNA. The abundance of
specific mRNAs in a sample was normalised to that of 18S
RNA. Data were obtained as Ct values and used to deter-
mine ACt values (Ct target — Ct 18S). Data were expressed
as arbitrary units using the following transformation: [arbi-
trary units (AU) = 1000 x (272%)].

11B-HSD1 activity of tibia tissue

Ex vivo tibia biopsies were placed in a culture medium con-
taining 100 nmol/l of 11-dehydrocorticosterone (11-DHC)
(to measure oxo-reductase/activation activity) along with
tritiated [°H] tracer amounts of 11-DHC. Steroids were ex-
tracted using dichloromethane and separated by thin-layer
chromatography using ethanol:chloroform (8:92) as the
mobile phase. Thin-layer chromatography plates were ana-
lysed by a Bioscan imager (Bioscan, Washington, DC, USA)
and the fractional conversion of steroids was calculated.
The protein concentration was assessed by a 96-well assay
kit (Bio-Rad). Results were expressed as picomole product/
per milligramme of protein/hour, and experiments were
performed in triplicate.
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Analysis of corticosterone, PINP and CTX by ELISA

Serum was collected from mice by cardiac puncture under
terminal anaesthetic. Briefly, whole blood was left at room
temperature for 30 min prior to centrifugation for 20 min
at 12,000 rpm. Serum was aspirated and stored at — 80 °C
prior to analysis. Unbound, serum-free corticosterone
levels were measured using a commercially available sand-
wich ELISA designed to specifically detect active (but not
inactive 11DHC) steroid (cat no: KGE009, R&D systems,
Abingdon, UK). Serum was analysed in accordance with
the manufacturer’s instructions and data expressed as
nanogrammes per millilitre (ng/ml). Serum PINP was de-
termined using a commercially available sandwich ELISA
(cat no: AC-33F1, Immunodiagnostic Systems, Tyne &
Wear, UK) in accordance with the manufacturer’s instruc-
tions and data expressed as ng/ml. Serum CTX-1 was de-
termined using a commercially available sandwich ELISA
(cat no: AC-06F1, Immunodiagnostic Systems, Tyne &
Wear, UK) in accordance with the manufacturer’s instruc-
tions and data expressed as units per microlitre.

Static histomorphometry

Static histomorphometry was performed by the skelet. AL
Skeletal Analysis Laboratories. Briefly, lumbar vertebrae 3
and 4 were fixed in 10% neutral buffered formalin, decalci-
fied in EDTA and embedded in paraffin, and 3-um sec-
tions were cut using a Leica Microsystems microtome
(Leica Microsystems, Milton Keynes, UK). The sections
were stained with either haematoxylin and eosin or tar-
trate-resistant acid phosphatise (TRAP) to identify osteo-
clasts and counterstained with Gill's haematoxylin. The
sections were examined by light microscopy (Leica Micro-
systems). The number of osteoblasts and osteoclasts per
millimetre were measured on 6.5 mm of the corticoendos-
teal surfaces, starting 0.25mm from the growth plate
using the Osteomeasure analysis software (Osteometrics,
Decatur, GA, USA).

Micro-CT morphometry analysis

Formalin-fixed tibiae from 13-week-old mice were
scanned using a Skyscan 1172 X-ray microtomograph at
60kV/167 pA with a 0.5-mm aluminium filter. Images
were obtained at a 5-pum resolution with a rotation step
of 0.45°. NRecon software was used to reconstruct the
images. Trabecular and cortical bone parameters were
analysed using CTAn Skyscan software: regions of inter-
est (ROI) were selected by drawing around trabecular or
cortical bone regions for each cross-sectional slice; the
tibia and bone architecture was determined by quantify-
ing trabecular and cortical bone parameters using CTAn
software. Trabecular bones 1.35 mm in length (200 sec-
tions) were selected for trabecular bone analysis at the
metaphyseal region near the growth plate. Extent was
determined by the length of trabecular bone growth in
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each sample, which was calculated by multiplying
slice number by pixel size of scanned image
(13.5 um). Meshlab software was used to process 3D
meshes of tibiae and calculate trabecular bone volume
to tissue volume (BV/TV), trabecular number (Th.N),
trabecular separation (Tb.Sp) and trabecular thickness
(Tb.Th).

Synchrotron sub-micron absorption tomography

Mice tibiae were examined on the Diamond Manchester
Imaging Branch I13-2 beamline at the UK’s national syn-
chrotron facility, Diamond Light Source (Harwell, UK).
Whole bones were centrally mounted on a rotation-transla-
tion stage. A defocused polychromatic incident X-ray
source (pink beam) was used to irradiate the entire sample.
A PCO.edge 5.5 camera system containing a sSCMOS sen-
sor was positioned behind the sample to collect an X-ray
absorption image. A x4 objective lens was positioned in
front of the camera sensor to provide a resolution of
0.81 um and a total field of view of 2.1 mm horizontally and
1.8 mm vertically. Each measurement consisted of 2500
projections, recorded over an angular range of 360° with an
irradiation time of 100 ms per projection. Full 3D recon-
struction was performed using in house I-13 software fol-
lowing identification of the centre of rotation in a single
orthogonal image from the mid-diaphysis to the region
immediately below the proximal epiphysis line. The recon-
structed volumes were analysed in software package Aviso®,
where osteocyte lacunae were rendered and thresholded
consistently for analysis of pore volume and morphology.

Statistical analysis

Statistical significance was defined as p <0.05 (*p <0.05;
**p <0.01; ***p < 0.001) using either an unpaired Student ¢
test or two-way ANOVA with a Bonferroni correction
where a Gaussian distribution is identified (determined by
both Kolmogorov-Smirnov and Shapiro-Wilk test), or a
non-parametric Kruskal-Wallis test with Dunn’s Multiple
Comparison where it is absent.

Results

Oral corticosterone induces GC excess in wild type and
11B-HSD1 KO animals

Nine-week-old C57BL/6 WT and global 113-HSD1 KO
mice received drinking water containing either vehicle
or corticosterone at 100 pg/ml for 4 weeks. Deletion of
11B-HSD1 and inhibition of corticosterone generation in
the bones of 113-HSD1 KO mice was confirmed in ex
vivo tibia biopsies, where corticosterone generation from
DHC was significantly abrogated in 113-HSD1 KO mice
compared to WT animals (Fig. 1a). Expression of H6pd
(the gene encoding the NADPH cofactor-generating en-
zyme H6PDH) required for 113-HSD1 steroid activation
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Fig. 1 a Corticosterone generation in tibia ex vivo biopsies isolated from WT and 113-HSD1 KO mice determined by scanning thin-layer chromatography.
b Serum corticosterone levels determined by ELISA in WT and 113-HSD1 KO receiving either vehicle or oral corticosterone (100 pug/ml). ¢ Adrenal weights
(mg) from WT and 113-HSD1 KO mice receiving either vehicle or oral corticosterone (100 ug/ml) and d representative paraffin-embedded sections of the
liver taken from WT mice receiving either vehicle or oral corticosterone (100 pug/mi) (x 20), stained with haematoxylin and eosin. Values are expressed as
mean + standard error of six animals per group. Statistical significance was determined using two-way ANOVA with a Bonferroni correction. *p < 0.05,

was highly expressed and did not change in tibiae, across
groups (Additional file 1: Figure Sla).

Evidence of circulating GC excess was determined
by measuring midnight (within normal active phase)
serum corticosterone levels. Serum levels of cortico-
sterone were significantly increased in both WT and
113-HSD1 KO animals receiving corticosterone in
drinking water relative to those receiving vehicle
(WT, 41.2 £ 12.3 ng/ml versus WT + Cort, 479.6 + 76.1
ng/ml, p <0.01; 113-HSD1 KO, 108.2 + 72.2 ng/ml ver-
sus 113-HSD1 KO + Cort, 329.5+ 51.6 ng/ml, p < 0.05)
(Fig. 1b) (Additional file 2). Serum levels were not
significantly different between WT and 11p-HSD1 KO
animals receiving corticosterone. Increased systemic
exposure to corticosterone was evidenced by the
marked suppression of adrenal weights in both WT
and 11B-HSD1 KO animals receiving corticosterone
and the onset of hepatic steatosis in WT animals
(Fig. 1c, d). These data confirm that oral administra-
tion of corticosterone in drinking water at 100 pg/ml
is sufficient to induce circulating GC excess in both
WT and 11p-HSD1 KO animals.

11B-HSD1 KO showed protection from corticosterone-
induced trabecular bone

To determine the role of 113-HSD1 in GIOP, we gener-
ated 3D trabecular meshes from the tibia following micro-
CT using Meshlab software (Fig. 2a). Analysis of 3D
trabecular meshes demonstrated that trabecular bone vol-
ume to tissue volume (BV/TV), trabecular number
(Tb.N), trabecular separation (Tb.Sp) and trabecular
thickness (Th.Th) were identical between vehicle-treated
WT and 11f-HSD1 KO animals (Fig. 2b—e). Following
oral corticosterone administration over 4 weeks, a signifi-
cant reduction in trabecular bone parameters was identified
in WT animals (BV/TV: WT, 8.5% +0.66 vs WT + Cort,
4.2% + 0.38, p < 0.001; Tb.N: WT, 0.0009 1/pm + 0.00004 vs
WT + Cort, 0.0006 1/pm *0.00004, p <0.01; Tb.Th: WT,
96.5 um + 3.8 vs WT + Cort, 73.5 um + 3.5, p < 0.01; Tb.Sp:
WT, 664pum=27 vs WT + Cort, 959 um+ 31, p<0.01)
(Fig. 2b—e). In contrast, 11p-HSD1 KO mice receiving cor-
ticosterone were protected from this reduction in trabecu-
lar BV/TV, Tb.N and Tb.Sp relative to vehicle-treated
controls (BV/TV: 113-HSD1 KO, 7.5% + 0.76 vs 113-HSD1
KO + Cort, 7.2% +0.71, NS; Tb.N: 113-HSD1 KO, 0.0008
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1/pm + 0.00004 vs 11B-HSD1 KO + Cort, 0.0009 1/um *
0.00008, NS; Tb.Sp: 113-HSD1 KO, 706.9 pm + 28, NS vs
11B-HSD1 KO + Cort, 789 um * 61, NS) (Fig. 2b, c). In con-
trast, 11p-HSD1 KO animals were not protected from sup-
pressed Tb.Th in response to corticosterone with a
significant reduction identified in these animals relative to
vehicle-treated controls (Tb.Th: 113-HSD1 KO 95.8 pm +
52 wvsl1p-HSD1 KO+ Cort, 794um=+3.1, p<0.05)
(Fig. 2d). Micro-CT analysis of cortical bone from 3D cor-
tical bone reconstructions revealed no significant differ-
ences in cortical thickness (Crt.T), cortical cross-sectional
area (Crt.A), endosteal medullary area (Med.A), periosteal
perimeter (Per.P) or cortical lacunae properties between
WT and 11B-HSD1 KO animals (Additional file 1: Figure
Sla-g).

These data indicate that treatment with oral cortico-
sterone at 100 ug/ml in drinking water for 4 weeks is
sufficient to induce marked trabecular bone loss at the
tibia of WT C57BL/6 animals. In contrast, animals with
deletion of 113-HSD1 demonstrate significant protection
against the bone-wasting effects of oral corticosterone in
trabecular bone.

GC-induced suppression of osteoblast numbers and bone
formation markers was blunted in 113-HSD1-KO mice

Bone metabolism is tightly regulated by the balance be-
tween osteoblast-mediated bone formations and osteo-
clast bone resorption. Analysis of bone osteoblast and
osteoclast numbers and serum biomarkers of bone for-
mation (procollagen type 1 amino-terminal propeptide
(PINP)) and bone resorption (degradation products
from C-terminal telopeptides of type I collagen (CTX-
1)) was performed by histomorphometry and ELISA

respectively to ascertain the impact of oral cortico-
sterone on these cell populations. A dramatic decrease in
osteoblast numbers per bone perimeter (Ob.N./B.pm) was
readily apparent in WT mice receiving oral corticosterone
relative to controls, with an almost total absence of osteo-
blasts (WT, 8.5+ 1.7 mm, versus WT + Cort, 0.1 + 0.07
mm; p < 0.001)(Fig. 3a, e). This was partially abrogated in
11B-HSD1 KO mice receiving corticosterone, where
osteoblast numbers were detectable, despite a significant
suppression (113-HSD1 KO, 10.3 + 2.9, versus 11p-HSD1
KO + Cort, 3.3 + 2.1 ng/ml; p <0.05). These results were
closely mirrored by a comparable dramatic decrease in
serum PINP in WT mice receiving oral corticosterone
(WT, 494.2 + 67, versus WT + Cort, 31.3 + 2.1 ng/ml; p <
0.00) that was also partially abrogated in 11p-HSD1 KO
mice (11p-HSD1 KO, 4057 + 694, versus 11B-HSD1
KO + Cort, 158.6 + 55.1 ng/ml; p <0.01) (Fig. 3c). Serum
levels of PINP were significantly higher in 11-HSD1 KO
mice receiving corticosterone than in WT counterparts
(WT + Cort, 31.3+2.1, versus 11B-HSD1 KO + Cort,
158.6 + 55.1 ng/ml; p < 0.05).

In contrast to osteoblasts, no significant changes in
osteoclast numbers per bone perimeter (Oc.N./B.pm) or
in serum measures of osteoclast activity determined by
CTX-1 were observed in WT and 11p-HSD1 KO mice
receiving GCs (Fig. 3b, d, f). The ratio of RANKL/OPG
gene expression was examined as a critical regulator of
osteoclast formation and activation in ex vivo tibia biop-
sies (Fig. 3). A significant increase in the RANKL/OPG
ratio was apparent in WT mice receiving oral cortico-
sterone (1.9-fold; p<0.01). 11-HSD1 KO mice were
protected from this increased ratio in response to oral
corticosterone with no significant change in expression
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Fig. 3 Histomorphometric analysis of numbers of (a) osteoblasts (N.Ob/B.Pm) and (b) osteoclasts (N.Oc/B.Pm) at the bone perimeter per square
millimetre from vertebrae L3 and L4. ¢ Serum PTNP (hg/ml) (d) and serum CTX-1 (ng/ml) were determined by ELISA in WT and 113-HSD1 KO
mice receiving either vehicle or oral corticosterone (100 ug/ml). e Representative images of osteoblasts and f representative images of osteoclasts
on trabecular bone surface. g The ratio of RANKL/OPG gene expression in the tibia from WT and 113-HSD1 KO mice receiving either vehicle or oral
corticosterone (100 pg/ml) was determined by quantitative RT-PCR. Values are expressed as mean + standard error of six animals per group. Statistical
significance was determined using two-way ANOVA with a Bonferroni correction. *p < 0.05, **p < 0.01, ***p < 0.001. Black arrows indicate osteoblasts

relative to 11B3-HSD1 KO mice receiving vehicle and a
significantly lower ratio compared to WT animals re-
ceiving GCs (Fig. 3e).

Analysis of markers of mature osteoblast gene expres-
sion in whole ex vivo biopsies of tibia was determined by
quantitative RT-PCR. In WT mice, the osteoblast
markers Bglap and Alp were significantly reduced fol-
lowing administration of oral corticosterone (Bglap, 33-
fold; p < 0.0001, Alp, 4-fold; p < 0.01) (Fig. 4a, b). In con-
trast, 113-HSD1 KO mice showed significant protection
from the suppression of Bglap with no significant change
in expression, whilst the suppression of Alp was com-
pletely abrogated following administration of oral cor-
ticosterone (Fig. 4b). mRNA expression of the osteoclast
marker Ctsk, the master regulator of osteoblast differen-
tiation Runx2 and the negative regulators of osteoblast

differentiation, Sost and Dkk1, were not altered in either
WT or 11B-HSD1 KO mice receiving oral corticoste-
roids (Fig. 4c-f).

Taken together, these data strongly indicate that the
bone loss identified in WT mice receiving corticosterone
is characterised by a profound suppression in osteoblast
numbers and bone formation, and a shift in the resorp-
tion/formation ratio that would favour net bone loss.
This appears to be partially dependant on 11B-HSD1
activity, where 11B-HSD1 KO animals show significant,
but not complete protection from the suppression in
osteoblast activity.

Discussion
Despite important systemic side effect, GCs continue to
be routinely employed in the management of chronic
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inflammatory diseases such as rheumatoid arthritis. In
this study, we show for the first time that pre-receptor
metabolism of exogenously administered GCs by the en-
zyme 11B-HSD1 is a key component mediating bone
loss in a murine model of GIOP. Here, following admin-
istration of active glucocorticoids such as corticosterone,
renal and hepatic metabolism ensures an equilibrium be-
tween active and inactive glucocorticoid substrates,
which are then available for tissue-specific pre-receptor
activation by the 11B-HSD enzymes [17, 18]. Previously,
the GC receptor (GR) has been shown to be critical in
mediating GIOP in mouse models of GC excess with the
targeted deletion of GR in both osteoblasts and osteo-
clasts being shown to be protective [26, 27].

We used a model of oral administration of cortico-
sterone in drinking water to delineate the precise contri-
bution of pre-receptor GC metabolism by 11p-HSD1 to
GIOP using a global KO model. Previously, this model
of exogenous GC excess has been shown to result in a
consistent diurnal exposure pattern, closely mimicking
the kinetics of clinical GC therapy [24]. Of note, sys-
temic and renal inactivation of glucocorticoid by 11B-
HSD2 has been shown to be unaffected in the global
11B-HSD1 KO mouse in response to corticosterone [28].

Both WT and 113-HSD1 KO mice treated with exogen-
ous corticosterone showed signs of corticosterone excess
with significantly elevated levels of the serum-free steroid
and marked suppression of adrenal weights relative to un-
treated controls. Furthermore, WT mice developed hep-
atic steatosis in response to corticosterone treatments in

line with classical presentations of GC excess previously
reposted in human and mouse models [18, 29].

Analysis of trabecular bone in the tibias of WT ani-
mals revealed a significant reduction in all trabecular
bone parameters following addition of corticosterone.
These data are supportive of a systemic GC-induced
bone loss in WT C57BL/6 mice in response to cor-
ticosterone in drinking water at 100 pg/ml for
4 weeks.

Similar studies have reported a robust decrease in
bone mass in response to therapeutic GCs such as pred-
nisolone in C57BL/6 mice [30, 31]. These studies iden-
tify a significant decrease in trabecular and cortical
content at the tibia in response to subcutaneous prednis-
olone pellets over 28 days. The bone loss phenotype
observed in our model is less marked, but is broadly
consistent with this, with evidence of early trabecular
bone loss at the tibia.

In vivo, GCs have been shown to potently suppress
osteoblast-mediated bone formation by increasing both
apoptosis and autophagy [32-35]. Certainly in this
model, we observed a dramatic suppression of osteoblast
numbers in trabecular bone of wild type mice treated
with corticosterone, with a robust suppression of PINP
as a marker of systemic bone formation and a marked
suppression of mature osteoblast markers including
osteocalcin and alkaline phosphatase. Together, these
data suggest that this model of GC excess is comparable
to those previously reported and suitable to examine the
role of 113-HSD1.
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Importantly, mice with a global deletion of 11p-HSD1
demonstrated a significant protection from trabecular
bone loss at the tibia following administration of ex-
ogenous corticosterone in drinking water. This
approached full protection from reductions in BV/TV,
trabecular number and trabecular separation and con-
ferred a partial protection from reduced trabecular
thickness. This protective effect appeared to be mediated
through a resistance to GC-induced suppression of bone
formation in osteoblasts, with a partial preservation of
trabecular osteoblast numbers, increased serum PINP
levels and elevated expression of the mature osteoblast
markers, osteocalcin and alkaline phosphatase in 11j3-
HSD1 KO animals relative to WT counterparts receiving
corticosterone. Further experiments in these animals
might utilise delivery of inactive steroid metabolites such
as DHC to assess 113-HSD1-mediated activation and tis-
sue-specific targeting without interference from residual
active corticosterone to examine its role in vivo.

Previous studies examining the overexpression of
11B-HSD2 targeted to osteoblasts and osteocytes in
mice, mediating complete GC signalling blockade in
these cells, have identified a phenotype characterised
by reduced cranial ossification and bone mineral
density [36, 37]. These studies demonstrate that GC
signalling is required for normal osteoblast and osteo-
cyte maturation and function. Deletion of 11B-HSD1
did not reproduce these findings in our study, sug-
gesting that basal GC signalling mediated by free cir-
culating active GCs is sufficient to mediate normal
bone development.

In contrast, targeted blockade of GC signalling in oste-
oblasts and osteocytes using either the overexpression of
11B-HSD2 or the inhibition of GR dimerization is able
to prevent GIOP in murine models of GC excess [26,
32]. We see similar findings in the 113-HSD1 KO mouse
suggesting that, whilst total levels of the active steroid
are increased in our model, they are insufficient to in-
duce trabecular bone loss in the absence of 113-HSD1
GC activation.

These prior studies provide compelling evidence that
the deleterious actions of GCs are mediated directly
through osteoblasts via an increase in osteoblast apop-
tosis and autophagy. Whilst our studies do not address
in which cell type deletion of 11B-HSD1 is mediating
protection from GIOP, previous studies demonstrating
robust expression of 11B-HSD1 in vivo and vitro
strongly indicate that 113-HSD1 expression within oste-
oblasts is likely to mediate the protection reported in
our global 113-HSD1 KO mice [20, 22, 26, 32]. How-
ever, the possibility that 11p-HSD1 within alternative
cell populations such as osteoclasts cannot be dis-
counted. Regardless, better characterisation of the 11p3-
HSD1-expressing cell subtypes that mediate protection
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may prove beneficial in the future where targeting of
therapeutic inhibitors of 113-HSD1 may be of interest to
more effectively prevent GIOP.

In this model, we chose oral administration of cortico-
sterone at 100 pg/ml to initiate GC excess in male
C57BL/6 mice and so cannot extrapolate these findings
to female animals. This dose of corticosterone was se-
lected due to the strong evidence of diurnal exposure
patterns, which closely mimic that seen in patients fol-
lowing oral therapeutic GC administration [24]. Other
methods such as subcutaneous pellets result in a con-
tinuous steady delivery of GC. Whilst this allows for the
better control of drug release, it may be less representa-
tive of delivery regimes in patients.

Conclusions

‘For the first time, this study demonstrates that 11p3-
HSD1 plays a critical role in mediating the detrimental
actions of exogenous therapeutic corticosterone adminis-
tration on bone and that its targeted deletion is able to
ameliorate GIOP in this murine model. This raises the
intriguing possibility that therapeutic inhibitors of 11pB-
HSD1 may be effective in preventing GIOP in patients re-
ceiving therapeutic steroids.

Additional files

Additional file 1: Figure S1. (a), Representative images of 3D
reconstructions of tibia cortical bone using micro-CT from WT and 113-HSD1 KO
receiving either vehicle or oral corticosterone (100 pug/ml). (b), Cortical cross-
sectional thickness (Crt.Cs.T), (c), cortical cross-sectional area (CrtCsA), (d)
endosteal medullary area (MedA) and (e) periosteal perimeter (Per.P) determined
by Meshlab software analysis of micro-CT in WT and 113-HSD1 KO receiving
either vehicle or oral corticosterone (100 pg/ml). (f), Quantification of osteoblast
lacunae in murine cortical bone collected at I-13 using pink beam, count time
100 ms, rotations 2500. Full 3D reconstruction was performed using in house I-13
script following identification of centre of rotation in a single orthogonal slice.
Volume rendering of osteocyte lacunae was performed in Aviso® prior to pore
analysis of Volume3d and Area’d. (), Average pore area (um3), (@) lacunae
number within a 100um? region of interest in WT and 118-HSD1 KO receiving
either vehicle or oral corticosterone (100 pg/ml). Values are expressed as mean +
standard error of three animals per group. Statistical significance was determined
using one way ANOVA with a Tukey's post hoc analysis. Values are expressed as
mean + standard error of six animals per group. Statistical significance was
determined using two way ANOVA with a Bonferroni correction. (TIFF 1190 kb)

Additional file 2: Figure S2. (a), Gene expression (AU) of Hopd
determined by quantitative RT-PCR in WT and 113-HSD1 KO receiving either
vehicle or oral corticosterone (100 mg/ml). Values are expressed as mean +
standard error of six animals per group. Statistical significance was determined
using two way ANOVA with a Bonferroni correction. (TIFF 316 kb)
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11-DHC: 11-Dehydrocorticosterone; 113-HSD1: 113-Hydroxysteroid
dehydrogenase type 1; BV/TV: Trabecular bone volume to tissue volume;
Cort: Corticosterone; Crt.CS.A: Cortical cross-sectional area; Crt.Cs.T: Cortical
cross-sectional thickness; GCs: Glucocorticoids; GIOP: Glucocorticoid-induced
osteoporosis; KO: Knockout; Med.A: Endosteal medullary area;

PTNP: Procollagen type 1 amino-terminal propeptide; Per.P: Periosteal
perimeter; Tb.N: Trabecular number; Th.Th: Trabecular thickness; WT: Wild
type
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