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Abstract

Background: The response to treatment for juvenile idiopathic arthritis (JIA) can be staged using clinical features.
However, objective laboratory biomarkers of remission are still lacking. In this study, we used machine learning to
predict JIA activity from transcriptomes from peripheral blood mononuclear cells (PBMCs). We included samples
from children with Native American ancestry to determine whether the model maintained validity in an ethnically
heterogeneous population.

Methods: Our dataset consisted of 50 samples, 23 from children in remission and 27 from children with an active
disease on therapy. Nine of these samples were from children with mixed European/Native American ancestry. We
used 4 different machine learning methods to create predictive models in 2 populations: the whole dataset and
then the samples from children with exclusively European ancestry.

Results: In both populations, models were able to predict JIA status well, with training accuracies > 74% and testing
accuracies > 78%. Performance was better in the whole dataset model. We note a high degree of overlap between
genes identified in both populations. Using ingenuity pathway analysis, genes from the whole dataset associated with
cell-to-cell signaling and interactions, cell morphology, organismal injury and abnormalities, and protein synthesis.

Conclusions: This study demonstrates it is feasible to use machine learning in conjunction with RNA sequencing of
PBMCs to predict JIA stage. Thus, developing objective biomarkers from easy to obtain clinical samples remains an
achievable goal.
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Background
One of the underappreciated advances in the field of
pediatric rheumatology has been the recognition that thera-
peutic response during the course of treated juvenile idio-
pathic arthritis (JIA) can be staged based on specific clinical
features [1]. Using hybridization-based gene microarrays, our

group has shown that these stages are associated with spe-
cific gene expression signatures in both peripheral blood
mononuclear cells [2, 3] and neutrophils [3, 4]. These find-
ings raised the possibility that gene expression patterns might
be used to develop clinically useful biomarkers to guide
therapeutic decision-making. For example, we have demon-
strated the feasibility of using microarray-based gene expres-
sion data as a means of developing prognostic biomarkers
that will determine a patient’s likelihood of achieving inactive
disease within 6months of initiating therapy [5]. However,
the development of expression-based biomarkers has been
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hampered by the considerable inter-patient variation that is
observed in gene expression studies of children with JIA,
problems that are compounded when complex cell types
such as peripheral blood mononuclear cells (PBMCs) are
used [6].
Over the past 10 years, significant advances have been

made in machine learning approaches to complex data-
sets. Augmented computational power and new methods
have facilitated successful classification even using het-
erogeneous populations, such as PBMCs. For instance,
Showe et al. used a support vector machine model of 29
genes expressed in PBMCs to distinguish between non-
small cell lung cancer and non-malignant lung disease
with 86% accuracy [7]. Serrano et al. also used support
vector machines in combination with PBMC expression
data to identify HIV-negative donors or HIV-positive
cART-treated samples with 94% accuracy [8]. Thus, ma-
chine learning has been successful in a wide spectrum of
disease classification problems.
In the present study, we renewed our efforts to deter-

mine the feasibility of developing biomarkers for disease
activity in JIA from PBMCs, which are easy and rela-
tively inexpensive to obtain and prepare from clinical
blood samples. We also sought to determine whether
such biomarkers might be detected in an ethnically het-
erogeneous population that included Native American
children, as the optimal biomarkers will be those that
are useful across the age range and diverse ethnicities of
the JIA population. Although patient-to-patient variabil-
ity in gene expression continues to be a challenge, we
demonstrate that machine learning approaches can over-
come this and successfully classify patients by disease
activity.

Methods
Patients and patient characteristics
This project was reviewed and approved by the IRBs of
the University of Oklahoma Health Sciences Center, the
University at Buffalo, and Seattle Children’s Hospital. All
research was conducted according to the IRB-approved
protocol. Written informed consent documents were ex-
ecuted for each subject, and, where appropriate, children
also executed consent documents.
Samples for this study were obtained from children

with polyarticular JIA as determined from standard cri-
teria and included three children who were rheumatoid
factor positive [9], as, once again, we are seeking bio-
markers that are applicable to the broadest range of chil-
dren with JIA. For the purposes of this study, we
examined only children with an active disease on medi-
cation with methotrexate (MTX) plus a biologic agent
(ADT group) and children who had achieved clinical re-
mission on medication (CRM group) who were on the
same medications. Active disease and remission statuses

were assigned according to the criteria of Wallace et al.
[1]. Active disease was determined by the presence of
physical signs of synovitis (warmth, synovial thickening)
in at least one joint. Although the Wallace criteria assign
active disease status to patients with laboratory findings
that are not otherwise explained by an intercurrent in-
fectious illness (e.g., elevated erythrocyte sedimentation
rate, thrombocytosis), no patient in this study was
assigned to the ADT group based on the isolated labora-
tory findings; all had synovitis in at least one joint. Chil-
dren were assigned to the CRM group if they had no
signs of active synovitis and morning stiffness lasting for
< 10min/day and no laboratory abnormalities other than
those that might be attributed to a self-limited illness or
medications. Furthermore, following the Wallace cri-
teria, children in CRM had maintained this condition for
six continuous months or more.
The first dataset included 12 samples from patients

who were involved in a previous study [6]. Of these, 4
were from patients with ADT, while 8 were from chil-
dren who fit the criteria of CRM. RNA sequencing
(RNAseq) data from those samples are available on the
Gene Expression Omnibus (GEO, #GSE79970). These
samples were all taken from children with non-Hispanic,
European ancestry.
For this study, we also performed RNAseq on 38 add-

itional samples from children with polyarticular JIA. This
study included samples from 15 patients (4 boys and 11
girls) who had achieved clinical remission on medication
(CRM). Of these 15 patients, 10 achieved CRM status on
methotrexate (MTX) alone, while 5 achieved CRM on
MTX plus a TNF inhibitor (2 on adalimumab, 3 on eta-
nercept). The remaining 23 (6 boys and 17 girls) were
classified as having an active disease on therapy (ADT).
Among the patients with ADT, 18 were on MTX alone,
while 5 were on TNF inhibitors (3 on etanercept and 2 on
adalimumab). There were 7 individuals from whom we
collected longitudinal data; therefore, these subjects have
both ADT and CRM samples. Nine samples were from in-
dividuals with mixed Native American/European ancestry
recruited from the pediatric rheumatology clinic at the
University of Oklahoma. Only 1 of these patients achieved
CRM within a year of diagnosis, which may be a reflection
of the severity of disease in the Native population, which
we have previously documented [10]. In total, we analyzed
an ethically heterogeneous dataset of 50 samples, 23 of
which were from patients in CRM and the remaining 27
from patients in ADT.

Cell isolation
Whole blood was drawn into 10-mL citrated CPT tubes
(Becton Dickinson, Franklin Lakes, NJ). Cell separation
procedures were started within 1 h from the time the
specimens were drawn. Peripheral blood mononuclear
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cells were separated from granulocytes and red blood
cells by density gradient centrifugation. Cells were then
immediately placed in TRIzol® reagent (Invitrogen,
Carlsbad, CA) and stored at − 80 °C.

RNA isolation and sequencing
RNA isolation and sequencing were carried out exactly
as described in [6]. In brief, total RNA was extracted
using TRIzol™ reagent and further purified using the
RNeasy MiniElute Cleanup kit (Qiagen, Valencia, CA).
cDNA libraries were prepared for each sample using the
Illumina TruSeq RNA sample preparation kit. Libraries
were sequenced using 100-bp paired-end reads on the
Illumina HiSeq 2500 platform.

Data analysis
RNA sequencing data analysis was carried out using Gal-
axy suite of tools. Sequenced paired-end reads were
aligned to the human reference genome hg19 with Bow-
tie2 (version 2.3.4.2) using default settings. Counts were
assigned to aligned reads using htseq-count (version
0.9.1). Counts were then converted to transcripts per
million (TPM) to facilitate a comparison between the
samples. As data was collected during 2 different time
points, we considered the 12 samples previously ana-
lyzed to be batch 1 and the 38 new samples to be batch
2. We used ComBat under default settings in R to per-
form batch effect correction.
We performed principal component analysis (PCA)

using raw counts of all 50 samples in R using prcomp
function to visually assess the presence of outliers or
batch effects in our dataset.

Model development
In order to develop and test prediction models, we ran-
domly divided the whole cohort into training and testing
cohorts. In this way, the features of the model are identi-
fied in the training cohort and then tested in an independ-
ent cohort to avoid bias. We used a 70-30 split to ensure
that the testing set encompassed sufficient sample hetero-
geneity. In training cohort data, we employed a cutoff of
average TPM > 1 and restricted our analysis to protein-
coding genes to increase the likelihood that genes identi-
fied are significantly expressed. In this subset of tran-
scripts, we performed a supervised feature selection using
Hilbert-Schmidt independence criterion least absolute
shrinkage and selection operator (HSIC LASSO) [11] to
identify transcripts that had greatest predictive power of
disease stage, i.e., ADT or CRM. This method works to
find a combination of genes that consist of non-redundant
features with strong dependence on disease status. Using
the selected transcripts, we trained the classification
models using MATLAB Statistics and Machine Learning
Toolbox. Specifically, we consider four algorithms which

are widely used for disease classification from expression
data, including K-nearest neighbors (KNN) [12], random
forest (RF) [13], support vector machine with cubic kernel
(cSVM) [14], and SVM with Gaussian kernel (gSVM) [15].
We briefly describe each method here.

� K-nearest neighbors: The K-nearest neighbor
method using a Euclidean metric was employed.
The number of neighbors, K, was set as 10. By
calculating the distance to each training sample, the
testing sample was classified as the class that was
most common among its K-nearest neighbors.

� Random forest: The random forest method was
employed to build a prediction model. The number
of trees was set at 1000. The random forest was
built by contrasting a multitude of decision trees
based on subsets of the training data generated by
random sampling with replacement. The resulting
model classifies testing samples by the majority vote
of the decision trees.

� Support vector machine: We trained prediction
models using support vector machine with two
different kernels: cubic and Gaussian. To separate
the binary-labeled samples, the SVM transforms
them into a multidimensional space using the kernel,
followed by a hyper-plane that maximizes the mar-
gin separating samples of either class. The resulting
model classifies testing samples by transforming
them into the higher dimensional space with the
corresponding kernel and making decisions based on
their signed distance to the hyper-plane.

Models were firstly evaluated using tenfold cross-validation
in the training cohort. Predicted disease stage was compared
to clinical diagnosis in order to determine the accuracy, sen-
sitivity, and specificity of each model, which were averaged
across the tenfold cross-validation for each model. We also
implemented a receiver operating characteristic (ROC) curve
analysis to determine the area under the curve (AUC) for
each model as an additional performance metric. Trained
models were then evaluated in an independent testing co-
hort. We calculated the accuracy, sensitivity, specificity, and
AUC for each model based on the model predictions of test-
ing samples.
We executed this pipeline in two different populations.

First, we developed models for JIA disease stage prediction in
the whole dataset. Then, since clinical experience has dem-
onstrated that patients with Native American ancestry have
more difficulty reaching remission (possibly reflecting differ-
ent genetic or epigenetic influences), we sought to determine
whether including this diverse patient population affected
model performance. Therefore, we developed models only
using samples of European descent and compared their per-
formance to models generated using all samples.
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Pathway analysis
We used ingenuity pathway analysis (IPA) to investigate
the biological pathways and networks associated with
model genes using the whole dataset. Model genes with
their log2-fold change of the ADT group relative to the
CRM group and t test p values (both calculated using
batch effect corrected TPMs of all 47 samples) were used
as input. We considered disease, biological functions, and
upstream regulators to be significant if the absolute value
of their activation z-score is > 2. The z-score reflects the
match between the observed gene expression and the pre-
dicted relationship direction. It is used to infer activation
states of called functions and regulators. Networks were
deemed significant if their score was greater than 15. Net-
work score uses a hypergeometric distribution and calcu-
lated with right-tailed Fisher’s exact test in this equation:
p-score = −log10(p value). This score reflects the approxi-
mate fit between the generated networks and eligible mol-
ecules from the input list.

Results
Data processing
For the newly sequenced samples, we achieved, on aver-
age, 73% of reads aligned concordantly exactly 1 time or
more than 1 time using Bowtie2. Raw counts with a sum

> 0 across all samples were used to visualize all samples
by PCA. Upon visualizing the entire dataset (n = 50)
using PCA, it became clear there were 3 outliers (603p-
ADT, S17-CRM, and S17-ADT). These samples were re-
moved prior to any model development, making our
dataset 47 samples in total. We then used Combat in R
to correct for batch effects present in this 47 sample
dataset.

Model development
Whole dataset model
For the first set of models we trained, we used the entire
dataset of 47 samples (25 ADT and 22 CRM). Approxi-
mately 70% of ADT and approximately 70% of CRM
samples were randomly assigned to the training cohort
for a total of 33 samples (18 ADT, 15 CRM). The
remaining 30% of both ADT and CRM samples were
used to form an independent testing cohort of 14 sam-
ples (7 ADT, 7 CRM). Cohort assignment is reported in
Additional file 1: Table S1. We applied HSIC LASSO in
the dataset of protein-coding transcripts with an average
TPM > 1 to identify 35 genes as input for the model.
The 4 models (KNN, RF, cSVM, gSVM) had accuracies
> 78% in the training cohort as by tenfold cross-
validation. Gaussian SVM performed the best with an

Fig. 1 Performance of four JIA prediction models in training and testing cohorts using all samples. a Mean accuracy, sensitivity, and specificity for
four different modeling methods (KNN, RF, cSVM, gSVM) in training as assessed by tenfold cross-validation. All had accuracies > 78%. b ROC analysis in the
training cohort demonstrated gSVM and RF provided best classifications with an AUC of 0.84. c Testing accuracy, sensitivity, and specificity for four models.
These are true values based on the predicted class of testing samples. RF, cSVM, and gSVM had similar performance with accuracies of approximately 79%.
d RF had the highest AUC (0.94) of the four models tested
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AUC of 0.84. Model accuracy, sensitivity, and specificity
in the training cohort are shown in Fig. 1a, while ROC
curves for each model are in Fig. 1b. Models performed
similarly in an independent testing cohort with accur-
acies > 78%, except for KNN, which only had an accur-
acy of 57%. Random forest outperformed other models
with an AUC of 0.94. Testing accuracy, sensitivity, and
specificity are shown in Fig. 1c, and ROC plots are in
Fig. 1d.

European model
The other dataset we used to develop predictive models
for JIA stage consisted of all European samples. There
were 38 samples in total, 17 ADT and 21 CRM. As in
the whole dataset model, approximately 70% of ADT
samples and approximately 70% of CRM were randomly
assigned to the training cohort, which consisted of 27
samples (11 ADT, 16 CRM). The remaining samples
comprised the testing cohort of 11 samples (6 ADT, 5
CRM). Cohort assignment is reported in Additional file 1:
Table S1. HSIC LASSO identified 33 genes to use in
model development. Gaussian SVM classified samples
the best with a training accuracy of 74% and a testing
accuracy of 91%. Other models’ accuracies ranged from
59 to 70% in training and 64–91% in testing. Training

results and ROC plots are shown in Fig. 2a and b, while
testing results and ROC plots are in Fig. 2c and d.

Analysis of model genes
Genes in each model are reported in Table 1. Those
marked with an asterisk are found in both models. We
note that approximately one third of the model genes
were identified both in the whole dataset population and
the European population. This suggests that ethnic het-
erogeneity does not have a dramatic effect on JIA pre-
diction models despite different remission rates. Figure 3
depicts the overlap of classifier genes between both pop-
ulations in which the models were developed.
We note that multiple genes within the two models

are associated with biological functions that are relevant
to JIA. For example, CD97 is an early activation marker
on T cells and interacts with CD55 to serve as a co-
stimulator [16]. CD97 also serves as an adhesion recep-
tor on inflammatory cells and stimulates angiogenesis
through binding integrin counter-receptors on endothe-
lial cells [17]. The CCAAT/enhancer-binding protein
delta (CEBPD, C/EBPδ) is a transcription factor that
modulates multiple biological processes, including in-
flammation [18]. ZAP70 kinase is an essential protein
for T cell signaling, and its absence leads to severe

Fig. 2 Performance of four JIA prediction models in the training and testing cohorts using only European samples. a Mean accuracy, sensitivity,
and specificity for four models in training as assessed by tenfold cross-validation. Accuracies ranged from 59 to 74%, with gSVM having the
highest accuracy. b Similar performance is reflected in the ROC analysis of the training cohort. gSVM again had the best performance with an
AUC of 0.72. c Improved accuracy, sensitivity, and specificity for four models are noted in the testing cohort as assessed by true predictions of
testing samples. KNN, cSVM, and gSVM all achieved a testing accuracy of 91%. d All models had AUCs > 0.90 in the testing cohort
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immunodeficiency [19]. IFNAR2 is the high-affinity re-
ceptor for interferons α and β, important modulators of
innate and adaptive immunity. We provide a complete
list of the genes that emerged from both models in Add-
itional file 2: Table S2.
Due to the high degree of overlap between the

model genes identified using the whole dataset or
only European samples and the fact that the whole

dataset model uses both more genes and more patient
samples, we conducted an IPA analysis on the genes
selected in the whole dataset model. Organismal
death and morbidity or mortality were predicted to
be increased in the ADT group (z-scores 2.7, 2.9). No
upstream regulators were found to be significant in
our data. Three networks had significant scores. The
first network, which scored 46, is associated with can-
cer, dermatological diseases and conditions, and
hematological disease. The first network, shown in
Fig. 4a, included members of important inflammatory
signaling such as NFKB, P38 MAPK, and ERK. The
top diseases and functions of the next network, with
a score of 22, were cell-to-cell signaling and inter-
action, cell morphology, and organismal injury and
abnormalities. The last network, with a score of 17,
associated with protein synthesis, RNA damage and
repair, and cancer. Networks 2 and 3 are shown in
Fig. 4b and c. Thus, the models developed with the
machine learning process incorporated not only select,
biologically relevant genes, but were also genes that,
as a group, reflected biologically coherent processes.

Discussion
Numerous studies have documented differences in the
gene expression profiles in PBMC when children with JIA
are compared to healthy children [20]. The specific differ-
ences in the expression profiles from what is seen in
healthy children vary from one JIA subtype to another
[21]. Thus, there has been considerable interest in exploit-
ing these features of JIA both to develop clinically useful
assays (e.g., for diagnosis and prognosis) and to better
understand the biology of treatment response [22].
As the attainment of remission has now become a

reachable goal in both pediatric rheumatology clinical
trials and the “target” of “treat-to-target” therapeutic
strategies [23], there is a pressing need for objective bio-
markers that will confirm that remission has been
achieved. We have shown that treatment response in JIA
is a highly complex, non-linear process associated with
considerable re-ordering of peripheral blood cell tran-
scriptomes after treatment is initiated [24, 25]. The
resulting state of “remission,” as reflected in the periph-
eral blood transcriptomes, is not a “normalization” of ex-
pression patterns, but, rather, a new and distinct state
that differs little whether remission (CRM) was achieved
using methotrexate alone or methotrexate combined
with a TNF inhibitor [3]. These findings suggested that
peripheral PBMC expression signatures might be used
to determine objectively that an individual patient had
achieved remission, regardless of the medications used.
Our earliest attempts in developing expression-

based biomarkers from PBMC expression data were
hindered by both the heterogeneity of the cell

Table 1 Transcripts selected by HSIC LASSO for model training
using all samples and only European samples

Whole dataset model European model

ACAP3* AC008267.1

ARL2BP* ACAP3*

CD97* ARL2BP*

CEBPD ARSA

FAM84B* ATXN2L

GATAD1 CCDC71

HES5 CCNA2

HIST1H3E* CD97*

IFNAR2 CKAP4

IL2RG EPM2AIP1

INPP5E* FAM84B*

KAT8 FANCF

KLF7 GLE1

LINS* GSAP

MCFD2 HIST1H3E*

MID1IP1 INPP5E*

MRPL38* KIF22

MT-CO2 L3MBTL2

MT-CYB LINS*

MT-ND4L MAPK8IP1

NSMAF MRP63

PAQR7 MRPL38*

PNPLA2 NME3

PSME2 OSMR

RPL23 PPM1K

S100P RANBP6

SIAH2* RLTPR

SPCS3* SIAH2*

SRP14* SPCS3*

SSNA1 SRP14*

TCTA TRIP13

THAP1 TXNL4B

UROD USP51

ZAP70

ZC3H12A

Transcripts with an asterisk are identified in both models
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Fig. 3 Venn diagram depicting the overlap of model genes between all sample and European sample models. Eleven genes, approximately 1/3
of the model genes, were identified by feature selection process using all samples and only European samples

Fig. 4 IPA networks using model genes from whole dataset analysis. Three networks were significant. Transcripts with increased expression in the
ADT group are red, while transcripts with decreased expression in the ADT group are green. The color intensity represents fold change. a The first
network (score = 46) associated with cancer, dermatological diseases and conditions, and hematological disease. b The second network (score =
22) associated with cell-to-cell signaling and interaction, cell morphology, and organismal injury. c The last network (score = 17) associated with
protein synthesis, RNA damage and repair, and cancer
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population and the heterogeneity of the patients [26].
However, since that earlier paper, numerous studies
have demonstrated the utility of machine learning
analytic approaches in developing biomarkers for dis-
ease “states,” even when heterogeneous cell and pa-
tient populations are studied [7, 8, 27–29]. For
example, we have recently demonstrated that machine
learning analysis of peripheral blood neutrophil ex-
pression data can accurately identify patients with
intracranial aneurysms [30, 31]. We have therefore
renewed our efforts to use PBMC expression data to
develop biomarkers of active disease and remission in
polyarticular JIA.
In the current study, we demonstrate that is it pos-

sible to predict the JIA disease stage, whether active
disease or remission (CRM), using PBMC expression
data and machine learning methods. Furthermore, we
demonstrate that the models performed equally well
whether we included only non-Hispanic, European-
descended subjects or a larger cohort that included
enrolled members of Native American tribes from
Oklahoma. Indeed, the models performed better when
the Native American patients were added, although
this may simply have been due to the fact that adding
these patients increased the number of subjects and
thus the accuracy and power of the predictive models.
We expect that we will further improve the predictive
power by further increasing the sample size. Imple-
menting other machine learning methods, such as
neural networks [32], may further improve our ability
to classify samples from a heterogeneous cell
population.
Our results were corroborated by functional analysis

of the genes that were used to discriminate active disease
and remission. The discriminating transcripts included
genes plausibly linked to the biology of therapeutic re-
sponse (a process about which we still understand very
little). Furthermore, the functional associations with
MAP kinase signaling, intercellular communication, and
cell adhesion are consistent with the findings from our
previous gene expression studies [2, 3, 5].
We were unable to discriminate between children

who achieved remission on MTX alone vs. those who
achieved remission on MTX plus a biological agent.
These findings are consistent with our earlier paper
showing the CRM, as defined by the Wallace criteria,
represents a distinct immunologic/transcriptional state
that differs a little (at least in PBMC) whether that
state was achieved with MTX or MTX plus a bio-
logical agent [3]. These findings suggest that there are
specific immune “set points” that must be reached in
order for the remission state to be achieved. Our
findings from neutrophils are also consistent with that
hypothesis [25].

Despite these promising results, we are still faced
with the challenge of using PBMC expression data
from individual patients to assign “active disease” or
“CRM” status, which will be required if such informa-
tion is to be used to inform clinical care. Achieving
this goal will require several additional steps, which
will include [1] refining this model using a larger co-
hort of patients [2], validating the model on an inde-
pendent cohort of patients, and [3] blindly assessing a
third cohort to assign status in individual expression
profiles. These are all achievable goals. Furthermore,
it seems likely that the problem of using a bulk popu-
lation of heterogeneous cells (PBMC) might be over-
come using single-cell RNAseq methods. While this
approach comes with its own analytic challenges [33],
there is no reason, a priori, that machine learning ap-
proaches could not be adapted to these types of data-
sets to developed classification models. Furthermore,
single-cell data may provide useful insights into the
mechanisms leading to the attainment of remission
that cannot be elucidated using bulk populations of
heterogeneous cells.
Another step that will need to be taken before

expression-based assessments of CRM come into clinical
use will be the demonstration that this approach is su-
perior than the method currently in use: application of
the clinical and laboratory findings that make up the
Wallace criteria (1). There is an ongoing concern in the
field that physical examination alone is insensitive to de-
tect subtle, smoldering synovitis, for example [34]. In the
present study, we limited ourselves to making a head-to-
head comparison between expression profiling and the
existing “gold standard,” i.e., the Wallace criteria. How-
ever, future studies will invariably require an assessment
of the reliability of expression profiling vs. the Wallace
criteria at, for example, predicting disease flares on or
off medication.

Conclusions
PBMCs remain a promising source for the development
of expression-based biomarkers, provided that the
proper analytic tools are used to develop classification
algorithms. The ease with which these cells can be ob-
tained and the continued improvement and affordability
of sequencing techniques make this a fruitful line of re-
search despite the inherent challenges of cell and patient
heterogeneity.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13075-019-2010-z.

Additional file 1: Table S1. Sample information.

Additional file 2: Table S2. Gene names and functions.
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