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Abstract

Background: Antibodies and upregulated cytokines and chemokines predate the onset of rheumatoid arthritis (RA)
symptoms. We aimed to identify the pathways related to the early processes leading to RA development, as well as
potential novel biomarkers, using multiple protein analyses.

Methods: A case-control study was conducted within the Biobank of northern Sweden. The plasma samples from
118 pre-symptomatic individuals (207 samples; median predating time 4.1 years), 79 early RA patients, and 74
matched controls were analyzed. The levels of 122 unique proteins with an acknowledged relationship to
autoimmunity were analyzed using 153 antibodies and a bead-based multiplex system (FlexMap3D; Luminex Corp.).
The data were analyzed using multifactorial linear regression model, random forest, and network enrichment
analysis (NEA) based on the 10 most significantly differentially expressed proteins for each two-by-two group
comparison, using the MSigDB collection of hallmarks.

Results: There was a high agreement between the different statistical methods to identify the most significant
proteins. The adipogenesis and interferon alpha response hallmarks differentiated pre-symptomatic individuals from
controls. These two hallmarks included proteins involved in innate immunity. Between pre-symptomatic individuals
and RA patients, three hallmarks were identified as follows: apical junction, epithelial mesenchymal transition, and
TGF-β signaling, including proteins suggestive of cell interaction, remodulation, and fibrosis. The adipogenesis and
heme metabolism hallmarks differentiated RA patients from controls.

Conclusions: We confirm the importance of interferon alpha signaling and lipids in the early phases of RA
development. Network enrichment analysis provides a tool for a deeper understanding of molecules involved at
different phases of the disease progression.
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Introduction
Rheumatoid arthritis (RA) is a common autoimmune
disease, characterized by immune cell infiltration of the
joints, cartilage and bone degradation, and resulting in
joint pain and stiffness. The etiopathogenic process lead-
ing to disease development and progression is not
completely understood, although there are autoimmune
processes ongoing long before any clinical symptoms

have occurred—i.e., an increased amount of anti-
citrullinated peptide antibodies (ACPA) and/or rheuma-
toid factor (RF) [1–5]. During the pre-symptomatic
period of the disease, a gradual broadening of the auto-
antibody repertoire is observed closer to disease onset,
i.e., epitope spreading [4, 6, 7]. Additionally, elevated
levels of cytokines and chemokines have been shown in
the plasma from pre-symptomatic individuals sampled
years before any symptoms or clinical manifestations are
present compared with controls [8, 9]. Also, using the ex-
pression levels of type I interferon-related genes has been
shown to be elevated in both seropositive at-risk individ-
uals and in pre-symptomatic individuals compared to

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: mikael.brink@umu.se
†Kristina Lejon and Solbritt Rantapää-Dahlqvist contributed equally to this
work.
1Department of Public Health and Clinical Medicine, Rheumatology, Umeå
University, 901 87 Umeå, Sweden
Full list of author information is available at the end of the article

Brink et al. Arthritis Research & Therapy          (2019) 21:288 
https://doi.org/10.1186/s13075-019-2066-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13075-019-2066-9&domain=pdf
http://orcid.org/0000-0001-7675-3488
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:mikael.brink@umu.se


controls [10]. In this study, analyzing a larger set of pro-
tein markers than previous studies, we aimed to gain fur-
ther insight into which molecular processes are involved
in RA development prior to the onset of symptoms and to
identify potential early biomarkers.

Material and methods
Subjects
A case-control study was conducted with individuals in-
cluded in population surveys within the Medical Biobank
of Northern Sweden. The criteria for the recruitment,
collection, and storage of the blood samples have been
described in detail previously [3]. The cohorts included
in the Medical Biobank are population-based, and all
adult individuals residing in the county of Västerbotten
are continuously invited to participate. To identify indi-
viduals who donated blood samples prior to the onset of
RA symptoms, the registers at the Medical Biobank were
coanalyzed with those of patients with RA, fulfilling the
1987 American Rheumatism Association classification
criteria for RA [11] at the Department of Rheumatology,
University Hospital, Umeå, and with a known date for
the onset of symptoms. In this study, 368 samples were
included for protein analysis: 209 samples from 118 pre-
symptomatic individuals, 85 samples from these individ-
uals after they were diagnosed with RA, and 74 samples
from controls matched to the pre-symptomatic individ-
uals (Additional file 1: Table S1). One sample from the
RA patients was excluded due to duplication. Seven
samples were excluded due to failure in the analysis pro-
cedure and/or outlying data (5 samples from RA patients
and 2 from pre-symptomatic individuals, all from differ-
ent individuals). Consequently, 118 individuals, referred
to as pre-symptomatic individuals, who had donated 207
blood samples at different time points before the onset
of symptoms were included in this study. Of the 118 in-
dividuals, 60 contributed to 1 sample, 32 contributed to
2 samples, 21 contributed to 3 samples, and 5 individ-
uals contributed to 4 samples. Of these 118 individuals,
79 were also sampled at the time of diagnosis—i.e., here-
after referred to as RA patients. The median [interquar-
tile range (IQR)] time predating the onset of symptoms
including all 207 samples was 4.1 (4.2) years. Control
subjects were identified from the same cohorts within
the registers of the Medical Biobank of northern Sweden
and were matched for age, sex, and date of blood sam-
pling; from them, 74 were randomly selected. All sam-
ples were thawed when dispensed onto 96-well plates
and were thereafter refrozen until analysis.

Protein analysis
Using antibody bead arrays, 184 Human Protein Atlas
(HPA) antibodies were employed to target 122 unique
proteins selected based on presumed relationships to

inflammation, immune response, and soft tissue, and
availability of target antibodies ([8, 12–15] and Personal
Communication). Matched pairs (from pre-symptomatic
individuals, RA patients, and controls) of samples were
randomized within the same plate of the 4 96-well
plates, sample replicates were added to each plate, and
assays were performed twice using newly prepared (la-
beled) samples. The samples were analyzed using a dir-
ect protein-labeling approach detailed elsewhere [16].
Briefly, the plasma samples were diluted and biotinyl-
ated. Antibodies were coupled to beads, and all individ-
ual bead IDs were combined to create a bead array. The
labeled samples were then heat treated and combined
with the bead array for analysis. After washing the beads
and detection, the analysis of the captured protein abun-
dance occurred in a flow cytometer system (FlexMap3D;
Luminex Corp., Austin, TX, USA). The median fluores-
cence intensity (MFI) of at least 32 beads per antibody
was chosen for data analysis.
The sample-by-sample variation within each assay

plate was considered with the probabilistic quotient
normalization (PQN) [17]. PQN accounts for the differ-
ences in the antibody dynamics by adjusting for the nor-
malizing factor using antibody-specific weights that
equal to 1 (correlation with the normalization factor)
(Dodig-Crnkovic et al., unpublished). To overcome plate
effects, we adjusted using Multi-MA [18].
Robust PCA was used to filter for outlying samples.

Failed and outlying sample data were reported as NA.
After quality control, i.e., only antibodies with values of
Spearman correlation between two replicated assays >
0.5, 31 proteins were excluded from further analysis,
leaving 153 HPA antibodies and 107 unique proteins for
further analysis (Additional file 2: Table S2).

Statistics
The protein expression data were primarily normalized
as described in the “Protein analysis” section. To make
the protein profiles amenable to parametric statistical
methods, we further rendered them to log values. Pro-
tein expression was tested for each i of the 153 anti-
bodies in a multifactorial linear regression model of the
form aov(expr[,i] ~ Case + TTS + Error (ID)) (using R
syntax), where “TTS” (time to symptom in months) was
interpreted as a quantitative main factor, while the
“Case” (0, control; 1, pre-symptomatic; 2, RA) was esti-
mated as an ordered main factor. The patients (ID)
served as replicates in this model. Differentially
expressed (DE) proteins were thus identified by the sig-
nificance of the “Case” p values.
Using this model, we performed three comparisons of

interest: (a) contrast between controls and the pre-
symptomatic state, (b) contrast between the pre-
symptomatic and RA states, and (c) contrast between
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the RA and control state. For further network analysis,
we needed to characterize each of these comparisons
with protein lists of equal length. This resulted in produ-
cing in lists of ten most differentially expressed proteins
(ranked by “Case” p values) in each of the three analyses
above, regardless of the formal significance of individual
proteins. p value levels of significance after adjustment
for multiple testing (by Benjamini-Hochberg) are re-
ported in Additional file 2: Table S2.

Network enrichment analysis
Biological phenomena can be characterized at the mo-
lecular level via pathway enrichment analysis. Among
the multiple existing versions of the latter, we chose the
method of network enrichment analysis (NEA) [19].
NEA can analyze differentially expressed protein lists
(i.e., altered gene sets (AGS)) in the way most similar to
that of overrepresentation analysis (ORA) [20]. The
major difference between NEA and the network-free al-
ternatives—ORA and most of the other methods—is that
the former accounts for and evaluates enrichment sig-
nificance via the number of network edges (links that
characterize protein functional coupling via different
molecular mechanisms [21]) between any proteins of
AGS (i.e., the list in question) and a pathway list (re-
ferred as a functional gene set (FGS)). Due to the high
density of edges currently known in the global network
(the median is ~ 50 to 100 per protein node), NEA pos-
sesses a very high statistical power to detect enrichment
(even in shorter lists such as N = 10) and is more robust
when validated across independent datasets [22]. An-
other advantage is that NEA incorporates pathway pro-
teins that themselves may not change expression,
although they could enable, for example, transcriptional
regulation, phosphorylation, or decay of the studied ex-
perimental proteins.
For the global network in NEA, we used the functional

links from several curated databases collected in the
Pathway Commons project (version 9) [23] with 846,631
links among 20,063 unique human proteins. The NEA
algorithm ignores confidence or other attributes of the
network links, which was a relevant feature in this ana-
lysis, since the Pathway Commons network collected
highly confident by rather heterogeneous links, based on
different analytical scales across a number of database
projects.
For the FGSs (pathways), the MSigDB collection of

hallmarks was employed [24]. It contained 50 protein
sets compiled to provide maximal coverage of the most
important cellular processes with a minimal overlap be-
tween the protein members of different hallmarks. The
analysis was run in R environment using package NEAr-
ender of version 1.4 (19). NEArender produced p values
of network enrichment for each AGS-FGS pair. The

latter were adjusted for multiple testing by Bonferroni
correction, i.e., p (Bonferroni) = p (NEA) ×Nhallmarks

(Benjamini-Hochberg correction would be less suitable
due to the low number Nhallmarks = 50).

Differential enrichment
One specific feature of the present analysis was in profil-
ing a predefined set of proteins with either a known or
suggested relationship to immunity and RA. In this con-
text, any enrichment method would identify multiple
FGSs relevant to these functional focuses. Therefore, in
addition to the standard NEA run on the actual protein
AGSs as described above, we implemented a control
permutation test. More specifically, for each of the six
experimental AGSs, we generated 10,000 sets of the
same size, sampled with replacement from the total pool
of the 153 antibodies. Next, for each FGS hallmark with
a significant NEA score, we required that the permuta-
tion p value from the latter test did not exceed 0.05. In
other words, an observation that an AGS list X was
enriched in connections with an FGS hallmark Y should
not have been recapitulated in more than 5% of the
random tests of XRi vs. Y, where i⊂{1 … 10,000}. Hence,
the permutation p value reported the probability of the
null hypothesis, namely that enrichment is due to the
functional focus of all the selected 153 proteins rather
than a particular experimental AGS. This filtering enabled
selecting hallmarks specifically pertinent to our analysis.

Random forest analysis
Three separate classification models to classify pre-
symptomatic individuals vs. controls, RA patients vs. con-
trols, and pre-symptomatic individuals vs. RA patients
were applied. We used random forests [25] as imple-
mented in the package randomForest [26] version 4.6-14
in the R software [27], version 3.5.0. To estimate class
membership probabilities, we used out-of-bag estimation
(which is the default setting) to obtain valid estimates of
the relevant probabilities.
The error rates used for estimating the AUC are the out-

of-bag (OOB) estimates provided by the RandomForest
package. The OOB estimates yield a quite good approxi-
mation to external validation, for details, see, e.g., [28].

Results
Linear model analysis
Applying multifactorial modeling, the pairs of the
experimental groups were compared (factor “Case”; con-
trols, pre-symptomatic individuals, or RA patients) and
included the analyzed 153 protein antibodies (represent-
ing 107 unique proteins). For the individuals who had
consecutive pre-symptomatic samples available, the
linear model of protein expression (PE) also accounted
for sampling order and, more precisely, time in months
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before the RA diagnosis (factor TTS); available replicates
over same individuals were used to estimate residual
error: PE = βcCase + βtTTS + ε(individual).
In these analyses, the levels of 78 (62 unique) proteins

were found to be significantly different (p value for
“Case”) between pre-symptomatic individuals and con-
trols, 121 (88 unique) differed between RA patients and
controls, and 49 (45 unique) proteins differed in com-
parison between pre-symptomatic individuals and RA
patients (before adjustments for multiple testing). The
10 proteins with the lowest values for each comparison
are presented in Table 1. The corresponding numbers of
proteins after adjustment for multiple testing were 22
(20 unique), 93 (75 unique), and 1 protein, respectively.
We also considered more complex models with sex and
age at the time of sampling as covariates. However, these
adjustments, while introducing potential imbalance to
the multifactorial linear model, did not affect our results,
except for the comparison between patients vs. pre-
symptomatic individuals where the TGFB3 protein was
not included in the respective AGS (the p values in the
lineal models increased from 0.004 to 0.0558).

Random forest analyses
The random forest modeling included all 153 proteins.
The analysis showed the order of the proteins in terms
of their accuracy for discriminating between the
compared groups (i.e., their relative importance). The
proteins for discriminating pre-symptomatic individuals
from controls yielded an area under the curve (AUC) of
0.75 calculated on all proteins. In Fig. 1a, the 30 most
important proteins are presented in consecutive order of
importance. The AUC comparing pre-symptomatic
individuals and RA patients was 0.80, a value expectedly
much higher comparing RA patients and controls
(AUC = 0.93) (Fig. 1b, c). The discrimination of the
groups using the random forest is visualized in
Additional file 3: Figure S1.

Comparison of the results from random forest analysis
and linear models
Of the 30 proteins with the highest discriminatory cap-
acity, 27 were significantly different in pre-symptomatic
individuals compared with controls analyzed using via
linear modeling (p < 1.9E−7 to p < 0.05). Between RA
patients and controls, 29 of the 30 proteins with the
highest accuracy for discrimination using random forest
analysis were also significantly different using linear
modeling (p < 5.5E−26 to 1.7E−4). Furthermore, compar-
ing the pre-symptomatic individuals vs. RA patients, 29
of the 30 proteins with the highest discriminatory
capacity according to the random forest analysis were
significantly different using linear modeling (p < 7.4E−4
to p < 0.05).

Table 1 The ten proteins with the highest significance using
multifactorial linear regression for pre-symptomatic individuals,
RA patients, and controls compared two-by-two

Pre-symptomatic individuals vs. controls

Protein p value Up or downregulateda

TNF 1.94E−07 ↑

PRR16 2.68E−07 ↑

CSF2 2.05E−06 ↑

CCDC85C 2.91E−06 ↑

CASP8 3.72E−06 ↑

IL33† 5.45E−06 ↑

FAM81A 5.77E−06 ↑

SELE 8.44E−06 ↑

HTRA1 1.39E−05 ↑

MMP10 2.16E−05 ↑

Patients vs. controls

Protein p value Up or downregulateda

TNF 5.52E−26 ↑

PRR16 9.82E−26 ↑

S100A12 1.06E−24 ↑

CSF2 3.33E−24 ↑

CASP8 2.35E−23 ↑

FAM81A 6.74E−22 ↑

MMP10 1.56E−21 ↑

HTRA1 2.05E−20 ↑

SELE 2.30E−20 ↑

ORM1, ORM2† 5.80E−20 ↑

Pre-symptomatic individuals vs. patients

Protein p value Up or downregulatedb

KCNB2† 2.92E−04 ↓

S100A12 7.41E−04 ↑

EPB41L5† 1.97E−03 ↑

COL6A1 2.55E−03 ↓

ZNF618† 3.82E−03 ↑

S100A12 4.32E−03 ↑

TGFB3† 4.43E−03 ↓

CCDC85C 6.28E−03 ↑

CSF2 6.73E−03 ↑

DSC3† 6.90E−03 ↑

SLC11A1† 8.33E−03 ↑
†Protein included uniquely in one of three top ten protein lists. An
expression change based comparison in apre-symptomatic individuals or
RA patients vs. controls and bRA patients vs. pre-symptomatic individuals
CASP8 caspase 8; CCDC85C coiled-coil domain containing 85C; COL6A1
collagen type VI alpha 1 chain; CSF2 colony-stimulating factor 2; DSC3
desmocollin 3; EPB41L5 erythrocyte membrane protein band 4.1 like 5;
FAM81A family with sequence similarity 81 member A; HTRA1 HtrA serine
peptidase 1; IL33 interleukin 33; KCNB2 potassium voltage-gated channel
subfamily B member 2; MMP10 matrix metallopeptidase 10; ORM1, ORM2
orosomucoid 1, orosomucoid 2; PRR16 proline rich 16; S100A12 S100
calcium-binding protein A12; SELE selectin E; SLC11A1 solute carrier
family 11 member 1; TGFB3 transforming growth factor beta 3; TNF
tumor necrosis factor; ZNF618 zinc finger protein 618
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Gene sets identified by network enrichment analysis
The 10 proteins with the lowest significance from each
two-by-two group (controls, pre-symptomatic individ-
uals or RA patients) comparisons were analyzed as AGS
in NEA against the hallmark gene set collection
(Table 2). In this and the 2 subsequent analyses, we
ensured that these proteins did not represent the whole
153-antibody panel by chance. For this purpose, we esti-
mated differential enrichment in a random permutation
test, upon which only the differentially enriched AGS-
FGS cases were reported. Taking this into account, 6
different hallmarks were identified as both significant
(Bonferroni-adjusted NEA p value < 10−5) and specific
(differential enrichment p value < 0.05): adipogenesis,
interferon alpha (IFN-α) response, heme metabolism, ap-
ical junction, epithelial-mesenchymal transition, and
transforming growth factor-beta (TGF-β) signaling
(Table 2). From these analyses, the same collection of
proteins was found in 2 different hallmarks (adipogene-
sis and heme metabolism), for example, for RA patients
vs. controls. Furthermore, 3 of the included proteins
could not be linked to any of the 50 hallmark gene sets
(proline rich 16 [PRR16], coiled-coil domain-containing
85C [CCDC85C], and solute carrier family 11 member 1
[SLC11A1]).

Functional gene sets identified between pre-symptomatic
individuals and controls
In the NEA comparing pre-symptomatic individuals and
controls, two hallmark functional gene sets (FGSs) were
identified, IFN-α response and adipogenesis. In the IFN-α
response gene set, tumor necrosis factor (TNF), caspase 8
(CASP8), colony-stimulating factor 2 (CSF2), interleukin
33 (IL33), HtrA serine peptidase 1 (HTRA1), and selectin
E (SELE) contributed to the enriched connectivity with
AGS, all with elevated levels in pre-symptomatic individ-
uals (Fig. 2a). CASP8 was also found to contribute to the
FGS (Fig. 2c). In the second identified gene set, adipogene-
sis, TNF, CASP8, CSF2, SELE, HTRA1, matrix metallo-
proteinase 10 (MMP10), and family with sequence
similarity 81 member A (FAM81A) were identified, also
showing higher protein levels in pre-symptomatic individ-
uals (Fig. 2a, and Additional file 4: Figure S2). The AGS
and FGS proteins included in this gene set are presented
in Fig. 2b.

Gene sets identified between RA patients and controls
In NEA following the differential expression analysis be-
tween patients and controls, the AGS was significantly
enriched into two hallmark FGSs, adipogenesis and
heme metabolism. All the AGS proteins were found at
higher levels in patients (Fig. 3a). In both AGSs, the
same nine proteins were involved. The set of proteins
linked to adipogenesis had a substantial overlap with

that from the analysis of pre-symptomatic individuals vs.
controls: TNF, CSF2, CASP8, FAM81A, SELE, HTRA1,
and MMP10 (Table 2). S100A12 and ORM1/ORM2
were only found in the comparison between the RA pa-
tients and controls. Both proteins were represented with
two antibodies in the panel, where one of each pair was
significantly differentially expressed, due to which they
were included in the list.

Gene sets identified between pre-symptomatic
individuals and RA patients
NEA on the AGS for pre-symptomatic individuals vs.
RA patients revealed a different hallmark pattern from
that of the two previously presented analyses (Table 2).
The gene sets linked to the hallmarks apical junction,
epithelial-mesenchymal transition, and TGF-β signaling
differed between the groups (Fig. 4). In the apical junc-
tion gene set, potassium voltage-gated channel subfamily
B member 2 (KCNB2), collagen type VI alpha-1 chain
(COL6A1), and transforming growth factor-beta 3
(TGFB3) showed higher levels in pre-symptomatic indi-
viduals (p < 0.001) compared with all other proteins that
were of higher levels in RA patients (p < 0.001–0.01)
(Additional file 4: Figure S2).

Discussion
In this study, starting with a preselected panel of 122 in-
flammatory and joint disease-related proteins, 107 of the
proteins, detected by 153 different antibodies, remained
after quality control. The network analysis could identify
6 different hallmark pathways separating the pre-
symptomatic individuals from both matched controls
and RA patients. Importantly, the RA patients were the
same individuals as the pre-symptomatic after they had
been diagnosed with RA at the early arthritis clinic. In
this study, the difference in protein levels among con-
trols, pre-symptomatic individuals, and RA patients were
analyzed using both random forest modeling and linear
models with subsequent analysis of NEA. To evaluate
the results of the linear model analyses, we performed
random forest analysis including all proteins. We ob-
served good concordance between the 2 analyses, al-
though random forest considered all proteins and linear
models compared each protein separately.
The hallmarks separating the pre-symptomatic indi-

viduals from controls were adipogenesis and IFN-α re-
sponse. In both hallmarks, all involved proteins were
found in higher levels in the pre-symptomatic individ-
uals than in the controls and 5 of them (TNF, CSF2,
CASP8, SELE, HTRA1) were found in both hallmarks.
Type I IFN, of which IFN-α belongs, has been shown to
be altered in the development of arthritis. In a previous
publication by Lubbers et al., gene expression was deter-
mined for 7 different type I IFN genes in 2 different
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Fig. 1 Analysis of the included 153 proteins using random forest analysis, showing the 30 proteins with the highest discriminative ability and
corresponding mean decrease accuracy—i.e., the decrease in model accuracy from permuting the values in each feature. Three comparisons
were made between a controls vs. pre-symptomatic individuals, b controls vs. RA patients, and c pre-symptomatic individuals and RA patients
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Table 2 Ten proteins with the highest significance in multifactorial linear regression (constituting AGS) and presence of a link to the
respective hallmark gene sets for pre-symptomatic individuals, RA patients, and controls compared two-by-two

Pre-symptomatic individuals vs. controls

Protein Up- or downregulateda Adipogenesis Interferon alpha response

3.74E−09# 0.0439# 2.08E−07# 0.0371#

TNF ↑ + +

PRR16 ↑

CSF2 ↑ + +

CCDC85C ↑

CASP8 ↑ + +

IL33† ↑ +

FAM81A ↑ +

SELE ↑ + +

HTRA1 ↑ + +

MMP10 ↑ +

Patients vs. Controls

Protein Up- or downregulateda Adipogenesis Heme metabolism

2.57E−13# 0.0058# 1.77E−10# 0.0022#

TNF ↑ + +

PRR16 ↑

S100A12 ↑ + +

CSF2 ↑ + +

CASP8 ↑ + +

FAM81A ↑ + +

MMP10 ↑ + +

HTRA1 ↑ + +

SELE ↑ + +

ORM1, ORM2† ↑ + +

Pre-symptomatic individuals vs. patients

Protein Up- or downregulatedb Apical junction Epithelial-mesenchymal transition TGF-β signaling

8.31E−13# 0.0391# 9.93E−43# 0.0287# 1.44E−09# 0.0279#

KCNB2† ↓ +

S100A12 ↑ + +

EPB41L5† ↑ + + +

COL6A1 ↓ + + +

ZNF618† ↑ +

S100A12 ↑ + +

TGFB3† ↓ + + +

CCDC85C ↑ + +

CSF2 ↑ + + +

DSC3† ↑ + + +

SLC11A1† ↑

#Numbers below each hallmark title display enrichment p values: general NEA (left) and differential (right)
An expression change-based comparison in apre-symptomatic individuals or RA patients vs. controls and bRA patients vs. pre-symptomatic individuals
CASP8 caspase 8; CCDC85C coiled-coil domain containing 85C; COL6A1 collagen type VI alpha 1 chain; CSF2 colony-stimulating factor 2; DSC3
desmocollin 3; EPB41L5 erythrocyte membrane protein band 4.1 like 5; FAM81A family with sequence similarity 81 member A; HTRA1 HtrA serine
peptidase 1; IL33 interleukin 33; KCNB2 potassium voltage-gated channel subfamily B member 2; MMP10 matrix metallopeptidase 10; ORM1, ORM2
orosomucoid 1,orosomucoid 2; PRR16 proline rich 16; S100A12 S100 calcium-binding protein A12; SELE selectin E; SLC11A1 solute carrier family 11
member 1; TGFB3 transforming growth factor beta 3; TNF tumor necrosis factor; ZNF618 zinc finger protein 618
†Protein included uniquely in one of three top ten protein lists

Brink et al. Arthritis Research & Therapy          (2019) 21:288 Page 7 of 14



cohorts; 3 of the analyzed genes (IFI44L, RSAD2, and
EPSTI) were also included in the 97 genes related to the
IFN alpha response hallmark [10]. Several of the proteins
included in the hallmarks are related to inflammation
and are represented within the IFN-α response innate
immunity pathway. Thus, the differential expression of
TNF was just modestly significant (p = 0.03, FDR < 0.1).
However, it has been well known for involvement in the
early inflammatory response and was found to be signifi-
cantly increased in a previous publication where we pre-
sented the concentrations of cytokines in pre-
symptomatic individuals compared with matched con-
trols [8]. The present study revealed its central role via

the statistical significance of the NEA result (Fig. 2b, c).
Also, as previously presented, CSF2/GM-CSF, a pro-
inflammatory cytokine that controls the production,
differentiation, and function of granulocytes and mono-
cytes, was increased in this study [8]. The blockade of
this cytokine has been suggested as a therapeutic ap-
proach in RA [30]. Both cytokines are associated with
the innate immune response [31]. Additionally, CASP8,
an initiator of apoptosis, plays an important role in the
regulation of neutrophil apoptosis and resolution of
acute inflammation [32]. SELE (E-selectin), which was
also found to be elevated, has been related to inflamma-
tion and TNF levels in other studies as well as to the

Fig. 2 The proteins behind the enrichment toward the hallmark gene sets adipogenesis and interferon alpha in pre-symptomatic individuals and
controls. a Protein abundance levels (log10) in controls vs. pre-symptomatic individuals; the upper panel shows proteins are related to
adipogenesis, while the lower panel relates to the interferon alpha gene set. Boundaries of the box indicating Q1 to Q3, vertical black line as the
median and whiskers according to Tukey. b, c Subnetworks extracted from the global Pathway Commons network (version 9, Cerami et al. [23]):
links connecting AGS proteins (yellow) with proteins of b adipogenesis and c interferon alpha FGSs. The orange color indicates proteins found in
both AGS and FGS. This and subsequent analyses were performed on the online NEA resource evinet.org [29]. Confidence of the network links (=
line thickness) was ignored by the NEA algorithm
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promotion of leukocyte extravasation [33]. HTRA1 and
MMP10 (the latter only within the adipogenesis hall-
mark) are proteins that degrade the extracellular matrix,
where MMP10 is expressed and released from RA syn-
ovial fibroblasts after stimulation with adiponectin [34].
Notably, adiponectin (DIPOQ) is included in the adipo-
genesis hallmark as FGS (Figs. 1b and 2c; DIPOQ).
Interestingly, the proteins HTRA1 and MMP10 were re-
ported to be part of the pathogenesis process independ-
ently from the pro-inflammatory cytokines, with higher
levels expressed in pre-symptomatic individuals than in
controls [35]. This suggests that the degradation of the
extracellular matrix is an early process occurring even
before the onset of symptoms of the subsequent disease.
IL-33, a member of the IL-1 family that is also associ-

ated with innate immunity, was uniquely identified in
the IFN-α pathway (Table 2). IL-33 acts as a traditional
cytokine—i.e., it is upregulated in a pro-inflammatory
milieu but has also been reported to act as a transcrip-
tional regulator [36]. IL-33 stimulation primarily induces
Th2 responses [36]. Thus, the observation in this study
is in line with our previous report where Th2-related cy-
tokines IL-4, IL-5, and IL-15 were shown to be upregu-
lated in pre-symptomatic individuals [8]. Additionally,
this is also supported by the observations by Hitchon
et al. where early undifferentiated arthritis was shown to
be associated with a Th2 response [37].

The protein PRR16 (Largen) was not included in any
of the hallmark sets and has not been previously linked
to RA or inflammation on the protein level. Interest-
ingly, in RA patients from Japan, exon sequence analysis
focusing on single-nucleotide variants identified the
PRR16 gene among the top 20 of 107 candidate genes
for RA susceptibility [38]. The protein CCDC85C
(coiled-coil domain-containing protein 85C) was not
linked to any of the 2 hallmarks and has previously been
identified to be increased in patients with established RA
analyzed compared with osteoarthritis (OA) [12].
In our analysis, the proteins distinguishing pre-

symptomatic individuals and RA patients were grouped
into 3 different hallmarks—i.e., apical junction, epithelial-
mesenchymal transition, and TGFβ-signaling. The protein
levels of CCDC85C and CSF2/GM-CSF were different be-
tween the pre-symptomatic individuals and controls, with
a higher level in the pre-symptomatic individuals. In com-
parison with RA patients, the levels of CCDC85C and
CSF2/GM-CSF were lower in the pre-symptomatic indi-
viduals, indicating a gradual increase in these proteins as
the disease develops. CCDC85C and KCNB2 have both
previously been found to be altered in screening for bio-
markers with significantly higher levels in RA patients
compared with healthy controls and osteoarthritis (OA)
patients, respectively [12]. Interestingly, in the present
study, KCNB2 was found at lower levels in RA patients

Fig. 3 The AGS proteins identified in the hallmark gene sets adipogenesis and heme metabolism in RA patients and controls. a Protein
abundance levels (log10) in controls and RA patients (the same nine proteins were identified in both gene sets). Boundaries of the box indicating
Q1 to Q3, vertical black line as the median and whiskers according to Tukey. b, c Subnetworks extracted from the global Pathway Commons
network: links connecting AGS proteins (yellow) and AGS and FGS proteins (orange) with links found in with proteins of the b heme metabolism
and c adipogenesis gene sets
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than in the same individual before symptom onset (pre-
symptomatic individuals), suggesting a primary role of this
protein in the early phase of disease development. Colla-
gen type VI (COL6A1) is a protein present in the extracel-
lular matrix of adipose tissue, skeletal muscle, and
synovia. COL6A1, which represents 1 of the 3 alpha-
chains in the heterotrimer, was also found at lower levels
in RA patients than in pre-symptomatic individuals in the
present study. Knowledge about COL6A1 in RA is sparse,
although COL6A1, in its soluble form, has been shown to
promote chondrocyte proliferation. Thus, lower detectable
levels of COL6A1 could indicate impaired regeneration of
the cartilage in RA patients [39]. The S100A12 protein
was found to be upregulated in RA patients and has previ-
ously been shown, in the plasma together with calprotec-
tin (S100A8/A9), to correlate with disease activity as well
as with CRP in RA patients [40]. EPB41L5 (erythrocyte
membrane protein band 4.1 like 5) was found in higher
levels in RA patients than in pre-symptomatic individuals.
It has a suggested role in the positioning of tight junctions
during polarity in epithelial cells and has been identified
in chronic skin disease—e.g., psoriatic vulgaris [41].
SLC11A1, another protein not included in any of the 50
hallmark gene sets, was shown by Sierra-Sanchez et al. to
be increased in RA patients than in controls, a finding that
is in line with our findings of increased levels in RA pa-
tients compared with pre-symptomatic individuals [13].
For the transcription factor ZNF618, interestingly, the
only description we found for this protein is that the
ZNF618 gene itself is located within a susceptibility region
for spondylarthritis [42]. DSC3 (Desmocollin-3), a protein
involved in the desmosome cell-cell junction and required
for cell adhesion and desmosome formation, was found at
higher levels in RA patients than in pre-symptomatic indi-
viduals in the present study. Several of the analyzed pro-
teins—e.g., DSC3—have been suggested as candidate
genes for RA susceptibility [43]. Moreover, CSF2 was
found to be significantly associated with RA in a GWAS
from Japan [44], and CASP8 was identified in a risk locus
based on its function in immune dysregulation [45].
All the aforementioned proteins except MMP10, which

only contributed to the adipogenesis gene set in pre-
symptomatic individuals vs. controls, were also identified
in the gene set hallmark adipogenesis and heme metabol-
ism comparing RA patients and controls (Table 2). The

same proteins that discriminated between pre-
symptomatic individuals and controls, except for IL-33
and CCDC85C, were found to be significantly increased
compared with that between RA patients and controls.
Additionally, S100A12 and ORM1/ORM2, representing
ongoing inflammation, were uniquely found in RA
patients.
Our pathway analyses point toward the influence of

both an innate immune response (i.e., IFN-α response)
as well as the involvement of adipogenesis in initiating
the events of disease development. IFN-α, which is part
of the type I IFN pathway, has been linked to tissue
damage, inflammation, and autoimmunity [31, 46, 47].
Our observation is in line with the reported elevated
type I IFN levels in cases of arthralgia [48]. Furthermore,
in untreated early cases of RA, type I IFN levels were
shown to be elevated [49]. Therefore, it is plausible that,
in the initiating events of the pathogenesis, increased
levels of type I IFN, due to either intrinsic susceptibility
or ongoing low-grade inflammation, could explain our
observed difference between pre-symptomatic individ-
uals and controls. Furthermore, inflammation, as a
driver for altered lipid metabolism, has been described
during infection as well as in autoimmune diseases in-
cluding RA [50]. Therefore, it is of great interest that the
adipogenesis pathway appears as a discriminating hall-
mark between pre-symptomatic individuals and controls.
This observation is in line with our, and of other, previ-
ously reported altered lipid profile in pre-symptomatic
individuals [51–53] as well as in patients with early arth-
ritis [54]. In a previous study comparing RA patients,
OA, and controls, lipid metabolism-related proteins
differed (annexin/ANXA6 and phospholipid transfer
protein/PLTP) between the groups [13]. Our group has
previously shown differences in BMI and apolipoprotein
alterations between pre-symptomatic individuals and
matched controls [51]; however, in the present study, no
impact of BMI was found in the included study groups.
Thus, the involved proteins seem to participate in sev-
eral processes in parallel, pinpointing the role of type I
IFN responses and adipogenesis as indicators and dis-
criminators of early pathogenesis.
Furthermore, one of the hallmarks differing between pre-

symptomatic individuals and RA patients seemed to be re-
lated to cell-cell interaction and potential communication,

(See figure on previous page.)
Fig. 4 The ten AGS proteins identified in the hallmark gene sets apical junction, epithelial-mesenchymal transition, and TGF-beta signaling in pre-
symptomatic individuals and RA patients. a Protein abundance levels (log10) in controls vs. pre-symptomatic individuals; the upper panel shows
proteins related to apical junction, the middle panel shows proteins related to epithelial-mesenchymal transition, and the lower panel shows
proteins related to the TGF-beta signaling gene set in pre-symptomatic individuals (n = 118, using only the sample collected closest to symptom
onset) and RA patients (n = 74). b–d Subnetworks extracted from the global Pathway Commons network: links connecting AGS proteins (yellow)
with proteins of the b apical junction, c epithelial-mesenchymal transition, and d TGF-beta signaling gene sets. Only S100A12.1 with the most
significant results is included in graphs b and c
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as suggested by the apical junction hallmark [55]. This hall-
mark includes many adhesion molecules as well as compo-
nents of the extracellular matrix, emphasizing the role of
ongoing tissue remodeling during disease development. In
line with this is the involvement of the epithelial-
mesenchymal transition hallmark. Indeed, this pathway in-
cludes the potential contribution of inflammation to fibro-
blast induction and fibrosis development (reviewed in [56].
Furthermore, this is also related to TGFβ because it has
been shown that TGFβ stimulates the proliferation of RA
synovial fibroblasts [57]. The effect of TGFβ on synovial
fibroblast proliferation has been challenged by other studies
[58].
The strengths of this study include the possibility to

use data from a well-defined large population-based
database, with individuals who previously, and repeat-
edly, donated blood samples to the cohorts in the
Medical Biobank before the onset of symptoms of RA.
That, in combination with sampling at the time of diag-
nosis, provides a unique set of samples to follow the
course of pre-symptomatic RA disease development.
However, we also acknowledge some limitations of this

study, as the reference database MSigDB hallmark con-
tains 50 gene sets, including approximately 7400 genes,
of which not all analyzed proteins were included. The
proteins we have analyzed were selected as being related
to inflammation in the early phases of disease develop-
ment, which could affect the results. Additionally, the
number of participants included in this study was fairly
low, although higher than many other similar studies
using samples from pre-symptomatic individuals.

Conclusions
In summary, using NEA, we have found new proteins and
their network partners, in particular, those involved in tis-
sue remodeling, as well as confirmed previously reported
proteins such as TNF. Our study provides an in-depth
analysis of potential involved candidate proteins in the de-
velopment of the complex disease rheumatoid arthritis.
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