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Integrated systems analysis of salivary
gland transcriptomics reveals key molecular
networks in Sjögren’s syndrome
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Abstract

Background: Treatment of patients with Sjögren’s syndrome (SjS) is a clinical challenge with high unmet needs.
Gene expression profiling and integrative network-based approaches to complex disease can offer an insight on
molecular characteristics in the context of clinical setting.

Methods: An integrated dataset was created from salivary gland samples of 30 SjS patients. Pathway-driven
enrichment profiles made by gene set enrichment analysis were categorized using hierarchical clustering.
Differentially expressed genes (DEGs) were subjected to functional network analysis, where the elements of the
core subnetwork were used for key driver analysis.

Results: We identified 310 upregulated DEGs, including nine known genetic risk factors and two potential biomarkers.
The core subnetwork was enriched with the processes associated with B cell hyperactivity. Pathway-based
subgrouping revealed two clusters with distinct molecular signatures for the relevant pathways and cell subsets.
Cluster 2, with low-grade inflammation, showed a better response to rituximab therapy than cluster 1, with high-grade
inflammation. Fourteen key driver genes appeared to be essential signaling mediators downstream of the B cell
receptor (BCR) signaling pathway and to have a positive relationship with histopathology scores.

Conclusion: Integrative network-based approaches provide deep insights into the modules and pathways causally
related to SjS and allow identification of key targets for disease. Intervention adjusted to the molecular traits of the
disease would allow the achievement of better outcomes, and the BCR signaling pathway and its leading players are
promising therapeutic targets.
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Background
Sjögren’s syndrome (SjS) is a systemic autoimmune dis-
ease with a specific predisposition for causing inflamma-
tion of the exocrine glands, predominantly the salivary
and lacrimal glands [1, 2]. This exocrinopathy usually re-
sults in dryness of the mouth and eyes, fatigue, and joint
pain, and has a negative effect on quality of life [1, 2].
Despite decades of intensive research, current manage-
ment is limited to the treatment of sicca symptoms and
no effective drug has yet been shown to modify the
underlying etiopathogenesis [1, 2]. This is ascribed partly

to the wide spectrum of glandular and extraglandular
symptoms, the heterogeneity of clinical trial participants,
and a lack of reasonable outcome measures to evaluate
the treatment response in patients with SjS [1, 3]. In
addition, there are substantial gaps in our knowledge re-
garding the mechanistic basis of SjS progression and
molecular stratification applicable to clinical practice.
The pathological hallmarks of SjS are the extensive infil-

tration of mononuclear cells into salivary glands and the ac-
tivation of salivary gland epithelial cells (SGECs) [1, 4, 5].
Activation of toll-like receptor (TLR) signaling in the gland
epithelium causes the production of autoantigens, the up-
regulation of immune-competent molecules, apoptosis, and
epithelial dysfunction. Autoantigens can be released from
SGECs and presented to immune cells. CD4+ T cells
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differentiate into follicular helper T(TFH) cells, which are
involved in the ectopic formation of germinal centers in sal-
ivary glands and contribute to the survival and autoanti-
body production of B cells. Interaction between SGECs and
B cells promotes B cell differentiation. Chemokines and cy-
tokines such as interferon (IFN)-γ, interleukin (IL)-6, IL-12,
IL-17, and BAFF (B cell-activating factor, also known as
TNFLSF13B or BLyS) have key regulatory roles in these re-
sponses. The initiation and progression of SjS is not the
sum of fragmentary states but a chain reaction mediated by
multiple coordinated molecular pathways and cellular activ-
ities. In the light of this complexity, new approaches are
needed to boost understanding of the molecular evolution
and cellular networks of clinical trajectories of SjS.
Systems biology approaches provide powerful means

to elucidate the coordinated molecular processes under-
lying the pathophysiology of complex diseases [6–9], and
we have recently reported novel molecular clustering
and pathological characterization for treatment response
for rheumatoid arthritis and systemic sclerosis using sys-
tems biology and machine learning methods [10, 11].
Here, we sought to integrate salivary gland transcrip-
tomic data in the context of active SjS to construct a
model of the pathological inflammatory component of
SjS. We systemically searched the salivary gland tran-
scriptomics datasets in the biomedical literature and
public data repositories and integrated them, which in-
creased sample size and allowed for the identification
and validation of robust and reproducible signatures of
the SjS phenotype. We used this dataset to separate
expression-driven subgroups and understand the key
cellular and molecular elements in each group. Next, we
compared our findings from SjS patients with an SjS
mouse model and investigated the clinical relevance of
the subgroups in terms of treatment response. Finally,
we applied an integrative network-based approach and a
Bayesian inference to identify the key causal regulators
of the disease module.

Methods
Systematic search and data collection
We used the keywords “Sjögren’s syndrome,” “salivary
gland,” “transcriptomics or microarray,” and “dataset” in
PubMed, Google Scholar, and public data repositories
(GEO, ArrayExpress) to find relevant publications to the
topic of salivary gland gene signatures of patients with
SjS (Fig. 1). We retrieved all publications that were ac-
companied by high-throughput datasets (seven datasets
in total). To secure the largest size of genes and samples,
the datasets measuring over 15,000 genes were selected,
finally resulting in four datasets (GSE7307, GSE23117,
GSE40611, GSE80805). The aggregated number of SjS
patients and normal healthy control (NC) was 30 and

23, respectively, and all SjS patients fulfilled the en-
dorsed classification criteria for SjS [12, 13].

Data normalization and removal of batch effects
All datasets were profiled for gene expression using the
Affymetrix array and the Robust Multi-array Average
method was applied on the image data for a set of repli-
cates for background correction, normalization, and
probe-set summarization. Residual technical batch ef-
fects arising due to heterogeneous data integration were
corrected using the ComBat function [14, 15]. Quality
assurance and distribution bias was evaluated by princi-
pal component analysis. After preprocessing, the gene
expression profiles have a significant reduction of sys-
tematic, dataset-specific bias in comparison with the
same dataset before normalization and batch correction
(Additional file 1: Figure S1).

Filtering of differentially expressed genes
In order to identify the differentially expressed genes
(DEGs), we used limma R package, a software designed
for the analysis of gene expression involving comparisons
between many gene targets simultaneously [16]. limma
borrows information across genes by fitting linear models
to overcome the problem of small sample size and com-
plex experimental design. Briefly, (1) linear models were
fitted for expression data of each transcript, (2) empirical
Bayes method was used to borrow information across
genes, (3) P values were adjusted by the Benjamin Hoch-
berg method, and (4) the adjusted P value cutoff of 0.01
was then applied.

Construction of protein-protein interaction network
To assess the interconnectivity of DEGs in the SjS saliv-
ary gland samples, we constructed a protein-protein net-
work based on the human interactome database [17]. In
the network, nodes and edges represent genes and func-
tional or physical relationships between them, respect-
ively. Graph theory concepts such as degree, closeness,
and betweenness were employed to assess the topology
of this network. Hub molecules were defined as the
shared genes in top 10% with the highest rank in each
arm of the three centrality parameters [18].

Functional and gene set enrichment analysis
We performed functional enrichment analysis focusing
on the list of upregulated DEGs using the Enrichr soft-
ware [19]. Gene ontology (GO)–biological process terms
were regarded significant if the adjusted P value is lower
than 0.01. GO terms irrelevant to salivary gland were fil-
tered out. Gene set enrichment analysis (GSEA) analysis
was carried out using the GSEA software from the Broad
Institute to assess the overrepresentation of SjS-related
gene sets [20]. The enrichment results were visualized
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with the Enrichment Map format, where nodes represent
gene sets and weighted links between the nodes repre-
sent an overlap score depending on the number of genes
two gene sets share (Jaccard similarity coefficient) [21].
To intuitively identify redundancies between gene sets,
the nodes were connected if their contents overlap by
more than 25%.
To test for gene enrichment in individual samples, we

used a single sample version of gene set enrichment ana-
lysis (ssGSEA), which defines an enrichment score as the
degree of absolute enrichment of a gene set in each sam-
ple within a given data set [22]. The gene expression
values for a given sample were rank-normalized, and an

enrichment score was produced using the Empirical Cu-
mulative Distribution Functions of the genes in the sig-
nature and the remaining genes. This procedure is
similar to the GSEA technique, but the list is ranked by
absolute expression in one sample.

Inference of cell types in gene expression profiles
In order to deconvolute the cellular composition of the
two clusters in our data, we used an algorithm called
xCell [23], a powerful machine learning framework
trained on the profiles of 64 immune and stroma cell
datasets, for generating cell type enrichment scores and
adjusting them to cell type proportions.

Fig. 1 Overview of data processing steps. A total of seven datasets were retrieved from the public data registries (GEO and ArrayExpress). Four
datasets were selected for integrated analysis, including samples from 30 patients with Sjögren’s syndrome (SjS) and 23 normal controls, covering
17,479 genes. The merged dataset was normalized using quantile normalization, and its batch effect was further corrected. Filtration of
differentially expressed genes (DEGs), gene-set enrichment analysis (GSEA), unsupervised clustering, and key driver analysis (KDA) were performed
according to the established methodology, and the clinical and molecular implications of the results were explored
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Unsupervised hierarchical clustering and determination of
the optimal number of clusters
To classify the SjS patients into subgroups based on
their molecular signatures, we used the agglomerative
hierarchical clustering method, a commonly used un-
supervised learning tool [24]. An agglomerative ap-
proach begins with each observation in a distinct cluster.
Then, the similarity (or distance) between each of the
clusters is computed and the two most similar clusters
are merged into one. It successively repeats to merge
clusters together and update the proximity matrix until
only a single cluster remains. Agglomerative hierarchical
clustering was performed with the dissimilarity matrix
given by Euclidean distance and the average linkage
score was used to join similar clusters [24]. The Euclid-
ean distance is the ordinary straight-line distance be-
tween two points in Euclidean space, and the larger the
distance between two clusters, the more distinct it is.
The Ward’s method involves looking at the distances be-
tween all pairs and averages all of these distances. To
identify the optimal number of clusters, and to assess
the robustness of the clustering results, we computed
the silhouette scores and gap statistic for different num-
bers of clusters from two to five [25]. To confirm un-
supervised clustering results, we used t-distributed
stochastic neighborhood embedding (t-SNE) [26], a
powerful dimensionality reduction method. The t-SNE
method captures the variance in the data by attempting
to preserve the distances between data points from high
to low dimensions without any prior assumptions about
the data distribution.

Classification using a Bayesian classifier
We constructed a classifier, where a set of predictors
consists of 26 pathways, using a naive Bayes machine
learning algorithm [27]. For training the classifier, we
used the pathway enrichment scores and subgroup labels
of the result of the agglomerative hierarchical clustering
process. We controlled overfitting in modeling by using
10-fold cross-validation and applied the 26-pathway clas-
sifier to assign subgroups to the new samples.

Key driver analysis
To predict genes that modulate the regulatory state of
the disease module, we employed key driver analysis
(KDA), an algorithm that mathematically identifies
causal modulators of the regulatory state of functionally
relevant gene groups [7, 8, 28, 29]. Bayesian networks
are directed acyclic graphs in which the edges of the
graph are defined by conditional probabilities that
characterize the distribution of states of each node given
the state of its parents. The network topology defines a
partitioned joint probability distribution over all nodes
in a network, such that the probability distribution of

states of a node depends only on the states of its parent
nodes [7]. KDA to identify key driver genes (KDGs)
takes as input a set of genes (G) and a directed gene net-
work (N; a Bayesian network). The objective is to iden-
tify the key regulators for the gene sets with respect to
the given network. KDA first generates a subnetwork
NG, defined as the set of nodes in N that are no more
than h layers away from the nodes in G, and then
searches the h-layer neighborhood (h = 1,…, H) for each
gene in NG (HLNg,h) for the optimal h*, such that

ESh� ¼ max ESh;g
� �

∀g∈Ng;h∈ 1; ;…; ;Hf g

where ESh,g is the computed enrichment statistic for
HLNg,h. A node becomes a candidate driver if its HLN is
significantly enriched for the nodes in G. Candidate
drivers without any parent node (i.e., root nodes in di-
rected networks) are designated as global drivers and the
rest are local drivers. The statistical significance of a key
driver for a given gene set in a particular Bayesian net-
work is determined by Fisher’s exact test which assesses
the enrichment of the genes in the candidate key driver’s
network neighborhood. Bonferroni-corrected P < 0.01
was used to determine key drivers. Functional classifica-
tion of the genes was detected by DAVID Bioinformatics
resources [30].

Statistical analysis
For continuous distributed data, between-group compari-
sons were performed using the unpaired t test or Mann-
Whitney U test. Categorical or dichotomous variables
were compared using the chi-squared test or Fisher’s exact
test. Correlation analysis between two variables was car-
ried out using Pearson’s correlation coefficient. All ana-
lyses were conducted in R (version 3.6.0, The R Project for
Statistical Computing, www.r-project.org).

Results
Differentially expressed genes and their protein-protein
interaction network
An overview of our study design, including sample
processing and the integrative network-based ap-
proach, is shown in Fig. 1. A list of DEGs was attained
by the comparison of gene expression profiles of the
salivary gland from SjS patients with those from nor-
mal healthy controls (NCs). A total of 310 upregulated
DEGs were identified in SjS (Additional file 2). Be-
cause identification of central attractors in the gene
and protein network can provide clues about novel
disease-associated genes with high priority or hidden
targets for further experimentation, we constructed a
protein-protein interaction network for SjS (Fig. 2a).
We identified 156 interactions of the 310 DEGs, and
211 genes were isolated without a direct link. The
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network included nine genetic risk factors (FCGR2B,
HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, IRF8,
OAS1, PRDM1, and VCAM1) [31–33] and two promis-
ing biomarkers (CXCL13 and GNA13) [34, 35]. The
largest connect component (LCC), also known as the
giant component, is a connected component of a net-
work that contains a significant proportion of the en-
tire nodes in the network [36, 37]. The LCC is usually
the most complex part of the network; it represents a
core that sustains the whole network [38]. LCC of the
network consisted of 69 genes and 20 genes were
ranked as hub molecules based on centrality analysis.
The top five hub molecules in order of degree were
FYN, LYN, LCK, SYN, and YWHAG.

Enriched biological processes
We performed functional enrichment analysis for the DEGs
using the Enrichr tool [19], from which 194 gene ontology
(GO)–biological process terms were identified (Fig. 2b and
Additional file 1: Figure S2). Type I and II IFN-related (type I
IFN signaling pathway, cellular response to IFN-γ, cellular re-
sponse to type I IFN, IFN-γ-mediated signaling pathway), B
cell-related (B cell receptor (BCR) signaling pathway, B cell
activation), and other major immune response-related (cyto-
kine-mediated signaling pathway, dendritic cell chemotaxis,
antigen receptor-mediated signaling pathway) processes were
predominantly enriched (Fig. 2b and Additional file 1: Figure
S2). This result was in concordance with the current concept
of salivary gland pathophysiology in SjS [1, 2, 4, 5]. The LCC
of the protein-protein interaction network was notably
enriched for B cell activation (P= 6.29 × 10−13), BCR signal-
ing pathway (P= 1.33 × 10−8), regulation of BCR signaling
pathway (P= 2.90 × 10−7), Fc-γ receptor signaling pathway
(P= 8.67 × 10−8), and the antigen receptor-mediated signal-
ing pathway (P= 1.46 × 10−14).

Enriched pathways describing SjS pathophysiology and
subgrouping
Genes, proteins, and other chemical compounds in a liv-
ing organism rarely act in isolation, but work coopera-
tively to perform certain biological functions. In the
same vein, disease is the summed result of aberrant acti-
vation of common pathways through dysregulated genes
and aggregated activity of compounds [39]. The advan-
tage of pathway-based analysis has been previously dem-
onstrated in clinical stratification for inflammatory
disease and cancer research [11, 40–42]. We curated 26
pathways or processes representing SjS pathophysiology
from the literature [1, 2, 4, 5] and computed a pathway
enrichment score for the gene sets from the KEGG and
Reactome databases for each sample using a single sam-
ple version of GSEA (Additional file 3) [43, 44]. We
assessed whether SjS patients could be categorized into
subgroups based on their pathway enrichment profiles

through agglomerative hierarchical clustering [24]. To
identify the optimal number of clusters, and to assess
the robustness of the clustering results, we computed
the silhouette scores and gap statistic for different num-
bers of clusters from two to five [25], and found that
two clusters most optimally represented the data (Fig. 3a
and Additional file 1: Figure S3). In a between-cluster
comparison analysis, enrichment scores of all the path-
ways except the transforming growth factor (TGF)-β and
IL-7 signaling pathways significantly differed (all P <
0.05) and segregation of the SjS subgroups was repro-
duced by t-SNE analysis (Fig. 3b).
Cluster 1 showed strong enrichment for most of the

pathways, whereas, in cluster 2, a limited number of
pathways such as the IFN-α,β, IFN-γ, TNF, and IL-12
signaling pathways were moderately enriched in a
subset of the samples (Fig. 3a, upper panel). One of
the datasets, GSE23117, included ten salivary gland
samples annotated with histopathological scores: five
early (one focus), three moderate (two to three foci),
and two advanced (diffuse infiltration with partial de-
struction of acinar tissue) [45]. Considering the histo-
pathological status of the samples tagged on top of
the clustering heatmap, cluster 1 favored moderate to
advanced status, while cluster 2 inclined toward early
to moderate status (Fig. 3a).
To characterize the cell types responsible for gene ex-

pression differences among the salivary gland samples,
we applied xCell software, the machine learning frame-
work to estimate cell type enrichment [23]. Cluster 1
was more enriched with B cells, CD4+ T cells, CD8+ T
cells, follicular helper T(TFH) cells, Th1 cells, regulatory
T(Treg) cells, natural killer(NK) cells, and macrophages,
while cluster 2 was enriched with epithelial cells (P <
0.05) (Fig. 3a, lower panel). Enrichment of immature and
plasmacytoid dendritic cells, plasma cells, and Th2 and
Th17 cells were not different between the two clusters
(P > 0.05).

Evolution of pathways and cell subset enrichment in an
SjS-like mouse model
To verify the transitional change of salivary gland molecu-
lar signatures in SjS, we imported GSE15640, the salivary
gland microarray datasets of five equally spaced time
points in a C57BL/6.NOD-Aec1Aec2 mouse [46], which is
a good model reproducing the immunopathological ab-
normalities and clinical phenotypes of SjS [47, 48]. Path-
way- and cell subset-driven enrichment scores by time
frame are summarized in Fig. 4a. In the earlier phase
(week 4 or 8), IL-7 and IL-17 signaling pathways were ac-
tive and Th1, Th2, and Th17 cells were highly enriched.
The molecular signature of epithelial cells was increased
at weeks 8 and 12. The enrichment score of most of the
SjS-relevant pathways and key immune cells (B cells, TFH
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Fig. 2 (See legend on next page.)
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cells, and NK cells) peaked at week 16 and weakened by
week 20. When compared with the patient’ samples by
hierarchical clustering, the earlier phase (weeks 4, 8, and
12) was similar to cluster 2, while the later phase (week 16
and 20) bore a close parallel to cluster 1 (Fig. 4b and Add-
itional file 1: Figure S4).

Association of pathway-driven subgroups with clinical
index
The microarray dataset E-MEXP-1883 includes 11
paired samples of baseline and 12-week follow-up pa-
tients from an open-label trial of rituximab therapy in
patients with SjS [49]. Patients were considered re-
sponders to rituximab if they had a ≥ 30% improvement
between weeks 0 and 12 in the value on at least three of
the four visual analog scales. A 26-pathway classifier was
developed using a naive Bayes machine learning algo-
rithm to predict the clusters for the new samples corre-
sponding to the above result. The classifier successfully
categorized the samples into two clusters. The evolution
of the samples by treatment response and cluster is sum-
marized in Fig. 5a. Most of the responders (85.7%) were
cluster 2 and all converted into cluster 2 at week 12 after
rituximab therapy. To investigate the change of SjS-
relevant pathways and cell subsets, pathway- and cell
subset-driven enrichment scores were computed (Fig. 5b,
c). In the responders, the main SjS-relevant pathways,
including BCR, chemokine, IFN-γ, IL-12, and T cell-
receptor signaling pathways, were significantly downreg-
ulated at week 12 after rituximab therapy (all P < 0.05),
and the key cellular components (B cells, CD4+ T cells,
CD8+ T cells, TFH cells, and NK cells) also diminished
(all P < 0.05). In contrast, the non-responders had much
higher signals for the pathways or cell subsets at baseline
compared with the responders or showed a worsening
tendency. Taken together, it is supposed that cluster 1
represents the advanced status of high-grade inflamma-
tion, while cluster 2 is the early or regressed status of
low-grade inflammation.

Identifying causal key regulators of the disease module
Elucidating the connectivity structure within the disease
module can lead to the identification of key driver genes
(KDGs) that are predicted to modulate the regulatory
state of the module, and will be of high interest to
prioritize as causal to disease development and

progression. We constructed a Bayesian network by pro-
jecting the genes from the LCC onto the human interac-
tome and employed key driver analysis (KDA), an
algorithm that mathematically identifies causal modula-
tors of the regulatory state of functionally relevant gene
groups to predict gene that modulate the regulatory
state of the SjS core module [7, 8, 28, 29]. We identified
14 differentially expressed KDGs (Fig. 6a, b). In gene
functional classification analysis using DAVID bioinfor-
matics resources [30], SYK tyrosine kinase and members
of the Src family kinase (FYN, LCK, and LYN) were the
key mediators in regulating signal transduction concern-
ing the BCR, T cell-receptor signaling pathways, and/or
NK cell-mediated cytotoxicity. The expression values of
the KDGs were remarkably higher in cluster 1 compared
with cluster 2 (Fig. 6c) and displayed a rising tendency
as the histopathological score of the salivary glands in-
creased (Fig. 6d). We identified that the BCR signaling
pathway and B cell activation were the main processes
of the core subnetwork, the LCC, in SjS (Fig. 2a). The
expression values of the KDGs were also closely corre-
lated with the enrichment scores of the BCR signaling
pathway and B cell activation (Additional file 1: Figure
S5). Leading-edge genes in a GSEA are those that con-
tribute most to the enrichment of a particular gene set
and include the most significantly upregulated genes in a
given gene set [20]. BTK, CR2, BLINK, PRKCB, PIK3CD,
and PLCG2 were the leading-edge genes shared by both
the BCR signaling pathway and B cell activation (Add-
itional file 1: Figures S6 and S7).

Discussion
In the present study, we collected salivary gland transcrip-
tomic profiles from patients with SjS and an SjS-like mouse
model. We carried out an integrative analysis to understand
differential expression patterns by histopathologic index or
treatment response in terms of the pathways and cell sub-
sets and to identify key drivers and molecules that may
serve as effective targets for therapeutic intervention. The
core processes of the DEG network in SjS were the BCR
signaling pathway and B cell activation, supported by acti-
vated T cells and various kinds of cytokines. Unsupervised
cluster analysis of the SjS transcriptomic profiles resulted in
two subgroups of SjS patients with distinct activities of the
relevant pathways, which had a positive relationship with
histopathology scores and showed differing responses to

(See figure on previous page.)
Fig. 2 Differentially expressed genes and their functional networks. a Protein-protein interaction network of upregulated DEGs. Informative genes
are colored and identified in the right-side table. b Functional enrichment map from the functional enrichment analysis using the Enrichr tool
(https://amp.pharm.mssm.edu/Enrichr3/). Nodes represent gene ontology–biological process (GO-BP) gene sets, and GO-BPs of interest are
labeled. Their color intensity and size are proportional to the enrichment score and the gene size, respectively. The edge thickness represents the
degree of overlap between gene sets, and only edges with a Jaccard similarity coefficient larger than 0.25 are visualized. See Additional file 1:
Figure S2 for the full node labels
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Fig. 3 (See legend on next page.)
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rituximab therapy. To pinpoint key regulators, we projected
the SjS core gene set onto the human interactome and
identified KDGs. These KDGs appear to be essential linkers
or signaling mediators downstream of the SjS core bio-
logical processes.
Although many immunomodulatory therapies or bi-

ologics have been trialed in SjS, the primary efficacy
endpoint has not been met and these treatments have
not been proven effective [50]. This could be

explained not only by a true lack of efficacy, but also
by the heterogeneity of the patients’ disease status. SjS
is a slowly progressing chronic autoimmune disease
and patients present with extremely variable symp-
toms and inflammatory levels of the salivary glands.
We constructed pathway-driven enrichment score
profiles across the patients, and these were optimally
separated into two clusters by their similarity. Cluster
1 was a high-grade inflammatory status enriched in a

(See figure on previous page.)
Fig. 3 Identification of SjS subgroups according to pathway-driven enrichment profiles. a Heatmaps and hierarchical clustering of gene set
enrichment scores by pathways and cell subsets. A matrix of pathway-driven enrichment score was clustered by agglomerative hierarchical
clustering and a heatmap of cell subset-driven enrichment scores was matched side-by-side. The histopathological grades for ten samples are
tagged on top of the heatmap. b t-SNE reduces the dimensions of a multivariate dataset. Each data point is assigned a location in a two-
dimensional map to illustrate potential clusters of neighboring samples, which contain similar pathway activity patterns. aDC, activated dendritic
cells; cm, cytotoxic memory; em, effector memory; iDC, immature dendritic cells; pDC, plasmocytoid dendritic cells

Fig. 4 Evolutional patterns of pathway- and cell subset-driven enrichment score in a SjS-like mouse model. a A heatmap of the averaged
pathway- and cell subset-driven enrichment scores by time points. b Clustering of integrated human and mouse pathway-driven enrichment
profiles. The left dendrogram shows the organization of the molecular subsets of SjS. Pathway-driven enrichment profiles from the mouse model
are interspersed among the human subsets
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number of the main immune cells, especially for B
cells and Th1 cells. In contrast, cluster 2 was a low-
grade inflammatory condition with a weak signature
for immune cells except for epithelial cells and Th17
cells. This result matched with the histopathological
scores and the evolutional change of gene expression
at salivary glands in an SjS-like mouse model. It is
noteworthy that the clusters determined the response
to rituximab therapy. Patients classified as cluster 2
showed better outcomes and the main signaling path-
ways and immune cell activities were effectively down-
regulated, which was in concordance with previous
results [51–53]. However, patients in cluster 1 did not,
and poor responders also existed in the prospective
clinical trials [53]. It could be suggested that an early
stage of SjS with suboptimally activated B cells, as in
cluster 2, can be subdued by B cell depletion therapy,

while the advanced subgroup with fully activated B
cells with assistance from other immune cells, as in
cluster 1, cannot be adequately controlled by rituxi-
mab and other approaches would be required. Future
clinical trials can consider this categorization using
gene expression profiling and differential analysis for
treatment response. This approach can also be used in
a clinical setting to determine whether a certain group
of patients are more responsive to the investigational
drug than other types of patients.
B cell hyperactivity was the key process in the core

subnetwork of SjS and cluster 1 showed much stronger
signatures for B cells and the associated pathological
pathways compared with cluster 2. Bayesian networks
have been successfully used to derive causal influences
among biological signaling molecules [54, 55]; moreover,
they have been successfully applied in the discovery of

Fig. 5 Temporal changes of molecular traits in SjS patients receiving rituximab therapy. a Temporal change of the cluster classification at baseline
and 12 weeks later by treatment response. C1 and C2 indicate clusters 1 and 2, respectively, and the samples were classified according to the
modeled Bayesian classifier. b Temporal change of the enrichment scores of the main SjS-relevant pathways at baseline and 12 weeks later by
treatment response. c Temporal change of the enrichment scores of the main cell subsets at baseline and 12 weeks later by treatment response.
Samples from the same patient are linked by a line. The red- and blue-colored dots indicate responders and non-responders, respectively. The
difference between the two time points was tested by paired t test. *P < 0.05; **P < 0.01

Min et al. Arthritis Research & Therapy          (2019) 21:294 Page 10 of 14



key regulators in various diseases such as inflammatory
bowel disease and Alzheimer’s disease [7, 8, 28, 29]. We
constructed differentially expressed and probabilistic
causal gene networks to model molecular interactions
and causal gene relationships, and applied Bayesian
networks-based KDA to identify and prioritize the key
drivers of SjS. The 14 KDGs were distinctively expressed
by cluster and had a positive relationship with the histo-
pathology scores, representing their leading role in the
immunoinflammatory response of SjS. SYK, LYN, NCK1,
and PLCG2 are the key mediators regulating signal
transduction of the BCR signaling pathway [56, 57] and
CD19, FYN, and LCK are also linked to this pathway
through the PI3K–Akt pathway [57–59]. In addition,
BTK, BLINK, and PIK3CD, the differentially expressed
leading-edge genes of the BCR signaling pathway, were
situated in the middle of the KDG network to effectively
perturb the KDGs. These results are reminiscent of B

cell malignancies such as chronic lymphocytic leukemia
[56, 60] and could provide a clue to the cause of unsatis-
factory SjS treatment. In chronic lymphocytic leukemia,
selective inhibitors against BTK and PI3KCD are used
for patients unsuitable or refractory to the rituximab-
based chemotherapy regimen [60]. In particular, we
found that PIK3CD was a DEG in the SjS salivary gland.
Its product, PI3Kδ, critically regulates a number of sig-
naling pathways driven by receptors including BCR, Fc-γ
receptor, and CXCR4, and functions to integrate and
transduce these signals from the microenvironment, thus
promoting B cell proliferation, growth, survival, adhe-
sion, and homing [57]. In a recent study by Nayar et al.,
the administration of PI3Kδ-selective inhibitors showed
significant therapeutic efficacy in a murine model of
focal sialoadenitis by reducing cytokine production and
accumulation of lymphocytes within the glands [61].
Taken together, a specific therapy engineered to

Fig. 6 Key driver analysis. a Probabilistic causal gene network projection and key driver analysis identifies causal regulators of the core SjS subnetwork.
Key driver genes (KDGs) and their neighbors are distinguished by color. b Fold change and false discovery rate of the differentially expressed KDGs. c
Expression levels of the KDGs by cluster classification. Expression levels of all KDGs (P < 0.001) except for PRKCQ (P = 0.058) were significantly different
between the two clusters by t test. d Expression levels of the KDGs by the histopathological scores. Samples were categorized as early (1 focus),
moderate (2–3 foci), and advanced (diffuse infiltration with partial destruction of acinar tissue) by their histopathology
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interrupt the BCR signaling pathway would be promising
for achieving better outcomes, especially for patients
with severe inflammation and lymphocytic infiltration in
the salivary glands.
There are some limitations to address in this study.

First, the number of patient’ samples was not large
enough, although we gathered all the available datasets.
The accumulation of more data in the future could fa-
cilitate more precise subgrouping and analysis. Second,
we did not address the association of each SjS subgroup
with other clinical factors, such as autoantibodies and
disease activity indices, because of a lack of complete an-
notation for those parameters. Third, minority signa-
tures by specific processes or cell subsets might have
been diluted because the gene expression signature was
at the tissue level and on a wide spectrum across the
patients.

Conclusion
SjS is a major medical challenge with a high unmet need.
In this study, we comprehensively profiled salivary gland
transcriptomic changes in SjS individuals. By adopting
an integrative, data-driven approach, we demonstrated
the breadth of cellular and mechanistic signatures in SjS,
separated the patients into two subtypes with distinct
molecular traits and treatment responses, and suggested
the promising molecular targets based on these subtypes.
This combination of findings is useful for ensuring bet-
ter targeting of B cell hyperactivity and concomitantly
better selection of patients most likely to benefit from
investigational drugs, potentially enabling more person-
alized therapy in the future.
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