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identified CD14++ CD16+ intermediate
monocyte as a marker of relapse in
patients with ANCA-associated vasculitis
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Abstract

Background: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is an autoimmune disease
that affects small- to medium-sized blood vessels. Despite treatments having been improved, patients often
experience disease relapses. It remains unclear how the immune cells involve in the development of vasculitis and
how they fluctuate over the course of treatment. In this study, we aimed to identify the immune subsets and
serum cytokines associated with disease relapse by comprehensive immuno-phenotyping in AAV patients.

Methods: We reviewed consecutive patients (n = 29) from Keio University Hospital who had been newly diagnosed
with AAV from January 2015 to February 2019 and chronologically followed until 52 weeks. Numbers of circulating
T cells, B cells, monocytes, and granulocytes were analyzed by flow cytometry (FACS). Serum levels of cytokines
were measured by electrochemiluminescence enzyme immunoassay. Clinical information was obtained from
patients’ records and association with time-course changes in immuno-phenotypes and serum levels of cytokines
were assessed.

Results: Comprehensive immuno-phenotyping data from 161 samples from 29 AAV patients at diagnosis; at weeks
4, 12, 24, and 52 of treatment; and at time of major relapse were examined. FACS analysis from patients with
relapse revealed that CD14++ CD16+ intermediate monocytes and plasma cells concomitantly changed associated
with disease relapse, which were independent from treatment regimen, ANCA status, or disease phenotype. In
particular, the number of CD14++ CD16+ intermediate monocytes at relapse was significantly higher than that in
remission or in healthy controls. Serum cytokine measurement revealed that changes of monocyte-derived
proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α were associated with disease status.

Conclusions: Chronological changes in CD14++ CD16+ intermediate monocyte counts can be a marker of disease
relapse in AAV patients.

Keywords: Anti-neutrophil cytoplasmic antibody-associated vasculitis, Immuno-phenotyping, Intermediate
monocyte, Plasma cell
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Background
Anti-neutrophil cytoplasmic antibody (ANCA)-associ-
ated vasculitis (AAV) is an autoimmune disease that
affects small- to medium-sized blood vessels and causes
vascular inflammation and multiple organ damage [1, 2].
AAV is primarily managed with high-dose glucocortic-
oid in combination with cyclophosphamide, rituximab,
or other conventional disease-modifying anti-rheumatic
drugs (csDMARDs) [3–5]. Despite improvements follow-
ing the introduction of cyclophosphamide- or rituximab-
based treatment, however, patients often experience
disease relapses [4–7].
Several lines of evidence from genetic and clinical

research have revealed immune cells related to AAV
pathogenesis. The results of genome-wide association
studies suggest that human leukocyte antigen (HLA)
genes including both major histocompatibility (MHC)
class I and class II alleles are associated with disease sus-
ceptibility of AAV [8, 9]. Previous reports have shown
abnormalities related to innate and adaptive immune
cells are involved in the pathogenesis of AAV. For
example, antigen-specific T and B cells are expanded,
which produce ANCA [10–12]. ANCA subsequently
leads neutrophils and monocytes to exposure of protein-
ase 3 (PR3) and myeloperoxidase (MPO) on their
surface, allowing their recognition of ANCA [13]. Other
reports have shown proliferation of circulating CD4+ T
[14, 15], follicular helper T (Tfh) [16] and activated
CD8+ T cells [17], and defects of regulatory T cells [18].
Previous reports showed that serum calprotectin and
urinary soluble CD163 could be potential biomarkers,
however, the exact role of monocytes in AAV has been
unclear [19, 20]. Recently, we reported a comprehensive
analysis using immuno-phenotyping to reveal that AAV
patients have combined features of antibody production,
cytotoxic activity, and neutrocytosis/lymphocytopenia
[21]. Proportions of HLA-DR+ CD4+ T cells, HLA-DR+

CD8+ T cells, plasma cells, plasmablasts, CD14++ CD16+

intermediate monocytes, eosinophils, and neutrophils
were increased in AAV compared to healthy controls
(HCs) [21]. Various studies exist; however, identifying
the specific cell subsets that drive the disease relapse has
been challenging.
Here, therefore, we aimed to identify the immune sub-

sets and serum cytokines associated with disease relapse
by comprehensive immuno-phenotyping in AAV patients.

Patients and methods
Patients and healthy controls
Consecutive patients with newly diagnosed AAV (n = 29)
who visited Keio University Hospital and fulfilled the 2012
Revised International Chapel Hill Consensus Conference
Nomenclature [22] for granulomatosis with polyangiitis
(GPA) and microscopic polyangiitis (MPA) between

January 2015 and February 2019 and HCs (n = 18) were
enrolled.
All patients received glucocorticoid therapy at an ini-

tial dose equivalent to 0.6–1.0 mg prednisolone (PSL)
per kilogram per day, which was tapered based on previ-
ously reported clinical trials [4, 5]. As induction therapy,
cyclophosphamide, rituximab, or others were selected by
the attending physician in routine practice. Intravenous
cyclophosphamide pulse was given at 10–15mg/kg for 2
to 4 weeks in 6 cycles, and rituximab was given at 375
mg/m2 body surface area per week for 4 cycles [3]. Pa-
tients who received rituximab as induction therapy were
usually treated with rituximab as maintenance therapy.
Patients who received cyclophosphamide were treated
with azathioprine, methotrexate, or tacrolimus as main-
tenance therapy.
We confirmed that HCs did not have any autoimmune

disease, severe allergic disorder, malignancy, or infection.
This study was approved by the research ethics commit-

tee of Keio University School of Medicine (#20140335) and
was conducted according to the Declaration of Helsinki.
Informed consent was obtained from all participants.

Clinical assessment
Clinical information was obtained from the patients’
records, including organ involvement of the ear, nose,
and throat (ENT); central nervous system (CNS); periph-
eral nervous system (PNS); and kidney and interstitial
lung disease (ILD), and data from laboratory studies of
erythrocyte sedimentation rate (ESR), white blood cell
count, hemoglobin, platelet count, ANCA titer (by
chemiluminescence enzyme immunoassay; CLEIA),
rheumatoid factor (RF), IgG, and C-reactive protein
(CRP) in serum. Patients were followed until 52 weeks of
treatment, until they died or were withdrawn, and infor-
mation on disease relapse was examined.
We evaluated the total Birmingham Vasculitis Activity

Score (BVAS) and the components of BVAS for each
organ involvement. Remission was defined as an absence
of clinical disease activity, as indicated by a BVAS of 0
that was maintained for at least 2 months [23]. Relapse
was defined as the recurrence or new appearance of any
disease activity, as reflected by the BVAS following
disease remission requiring reinduction therapy [4].
Relapse of ILD was defined as the reappearance of new
bilateral ground-glass opacities on high-resolution com-
puted tomography requiring treatment intensification
[24]. Severe infectious diseases were designated grade ≥
3 based on the Common Terminology Criteria for
Adverse Events V.4.0 [25].

Flow cytometry (FACS) analysis for immuno-phenotyping
We collected heparinized peripheral blood samples from
patients with AAV at diagnosis; at weeks 4, 12, 24, and
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52 of treatment; and at time of major relapse. Because
corticosteroids alter the number of peripheral immune
cells in peripheral blood [26], immuno-phenotyping was
carried out prior to receipt of high-dose corticosteroids
at baseline and relapse. FACS analysis was performed
according to MIFlowCyt [27] and was conducted on
LSRFortessa™ X-20 (BD Biosciences, NJ, USA) without
delay after collecting samples. One hundred microliters
of heparinized blood samples were stained with anti-
bodies (Supplementary Fig. 1); then, the staining samples
were fixed by (PhosflowTM Lyse/Fix buffer, BD, NJ,
USA). We used Flow-count Fluorospheres (BECKMAN
COULTER, CA, USA) to acquire standardized number
of immune cells. Data were analyzed by 3 individual
authors blinded to the sample details using FlowJo v.10.1
Software (Tree Star, Stanford University, CA, USA).
The phenotypes of immune cell subsets were defined

based on the Human Immunology Project protocol [28].
We modified the definition of plasmablast and plasma cell
based on other references [29, 30], CD19+ CD27+ IgD−

CD20− CD38+ CD138+ as plasmablast and CD19+ CD27+

IgD− CD20− CD38+ CD138++ as plasma cell. When we
performed FACS analysis, micro-sized cells were gated
out, instead of using a dead/live marker. Details of the gat-
ing strategy are shown in Supplementary Fig. 1.

Cytokine measurement
Levels of interferon (IFN)-γ, interleukin (IL)-1β, IL-6,
IL-8, IL-10, and tumor necrosis factor (TNF)-α in serum
were determined using a commercial electrochemilumi-
nescence assay (Meso Scale Discovery, MD, USA) ac-
cording to the manufacturer’s protocol. Serum samples
were stored at − 80 °C prior to assay.

Statistical analysis
All analyses were conducted using SPSS Statistics version
26.0 (IBM Corp., NY, USA), JMP version 14.0 (SAS Insti-
tute, NC, USA) or GraphPad Prism software version 8.0
(GraphPad, CA, USA). Continuous data are expressed as
median (IQR), and categorical data as number and/or
percentage. Descriptive statistics were used to summarize
the data. Continuous variables were compared using the
Mann-Whitney U test, and categorical variables using the
chi-squared test. Longitudinal data was analyzed using
generalized estimating equations (GEE) [31–33], Wil-
coxon signed rank sum test, repeated measures analysis of
variance (ANOVA), and post hoc test. For GEE, the
number of peripheral immune cells were normalized using
z-score. Then, univariate GEE association over time for
normalized number of peripheral immune cells and levels
of serum cytokines with BVAS was analyzed. P values less
than 0.05 were considered significant.

Results
Baseline characteristics, treatment, and therapeutic
prognosis of patients
We collected FACS data and clinical profiles from 29
AAV patients who were followed longitudinally across a
total of 161 visits. All patients were treated with
glucocorticoid-based treatment. Ten patients (34%) were
treated with cyclophosphamide and 8 (28%) were treated
with rituximab. The other 11 patients (38%) were treated
with PSL as monotherapy or in combination with
csDMARDs (azathioprine, 9; methotrexate, 1). All pa-
tients received rituximab as maintenance therapy when
they reached remission by using rituximab as induction
therapy. When patients reached remission with cyclo-
phosphamide induction, they received azathioprine,
methotrexate, or tacrolimus as maintenance therapy. A
small number of patients were unable to use immuno-
suppressive drugs as maintenance therapy due to severe
infection or other adverse events.
Baseline characteristics, treatment, and therapeutic

prognosis of the patients treated with each regimen and
HCs are summarized in Tables 1 and 2. Patients treated
without using cyclophosphamide or rituximab tended to
be older (cyclophosphamide vs rituximab vs others: 68
[52–75] vs 61 [50–76] vs 79 [64–83] years), higher pro-
portion of MPA (50 vs 50 vs 64%), and lower BVAS (12
[12–17] vs 9 [9–16] vs 10 [5–14]). Of the 29 patients, 9
patients (26%) experienced relapse during the 52-week
follow-up period.

Changes in immuno-phenotyping associated with disease
relapse
To assess changes in the numbers of peripheral immune
cells at remission and at relapse phase, we longitudinally
profiled the immuno-phenotyping data of 9 patients who
achieved remission then relapsed. We followed the
immuno-phenotyping data of these patients until 52
weeks of treatment and calculated the correlation score
between the fluctuation in each immune cell and change
in disease activity.
We next examined the longitudinal associations be-

tween normalized number of peripheral immune cells
and BVAS (Table 3). Univariate GEE analysis showed
that changes in BVAS were significantly associated with
changes in CD14++ CD16+ intermediate monocytes (β =
0.82, 95%CI 0.25–1.4, P = 0.005), CD14++ CD16− clas-
sical monocytes (β = 0.61, 95%CI 0.018–1.2, P = 0.043),
and eosinophils (β = 0.56, 95%CI 0.026–1.1, P = 0.040).
Additionally, plasma cells (β = 0.54, 95%CI: − 0.037 to
1.1, P = 0.067) tended to be associated with total BVAS,
while that of other cell subsets did not show any notable
correlation.
Then, we compared absolute number of circulating

immune cells among onset, 1st remission, relapse, and
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2nd remission using Wilcoxon signed rank sum test. As
shown in Table 4, we found that the number of plasma
cell and eosinophil at onset was higher than that at
remission. CD14++ CD16+ intermediate monocytes at
relapse were higher than that at remission. The number
of CD14++ CD16+ intermediate monocytes at relapse
was 3.2 times greater than that in HCs (Fig. 1A-a). The
number of plasma cells at relapse was comparable to
those in remitted patients and HCs (Fig. 1B-a).

The difference among treatment regimens (Fig. 1A-b,
B-b, C-b, and D-b) and disease phenotypes (Fig. 1A-c, B-
c, C-c, and D-c) was analyzed by repeated measures
ANOVA and post hoc Friedman test. There was no sig-
nificant difference in changes of monocytes (Fig. 1A-b),
CD14++ CD16+ intermediate monocytes (Fig. 1B-b),
CD19+ B cells (Fig. 1C-b), and plasma cells (Fig. 1D-b)
among treatment regimens. In addition, the levels of
monocytes (Fig. 1A-c), CD14++ CD16+ intermediate

Table 1 Baseline characteristics, treatment, and effects of treatment in AAV patients

Variable AAV, n = 29 Induction treatment HC, n = 18

IVCY, n = 10 RTX, n = 8 Others, n = 11

Baseline demographic

Age at diagnosis, years 70 (57–79) 68 (52–75) 61 (50–76) 79 (64–83) 51 (46–60)

Male, n (%) 13 (45) 6 (60) 2 (25) 5 (45) 7 (39)

PR3-ANCA+ GPA, n (%) 7 (24) 3 (30) 2 (25) 2 (18)

MPO-ANCA+ GPA, n (%) 5 (17) 2 (20) 1 (13) 2 (18)

ANCA− GPA, n (%) 1 (3) 0 (0) 1 (13) 0 (0)

MPO-ANCA+ MPA, n (%) 16 (55) 5 (50) 4 (50) 7 (64)

BVAS 12 (8.5–15) 12 (12–17) 9 (9–16) 10 (5–14)

Organ involvement

Ear, nose, throat, n (%) 13 (45) 5 (50) 3 (38) 5 (45)

CNS, n (%) 7 (24) 2 (20) 3 (38) 2 (18)

PNS, n (%) 5 (17) 1 (10) 2 (25) 2 (18)

Kidney, n (%) 12 (41) 5 (50) 3 (38) 4 (36)

ILD, n (%) 17 (59) 5 (50) 4 (50) 8 (73)

Laboratory tests

ESR, mm/h 102 (47–124) 105 (93–123) 53 (17–119) 121 (61–128)

WBC, × 103 cells/μL 9.2 (7.0–14) 14 (8.7–15) 8.3 (5.4–9.0) 9.2 (6.1–15)

Hemoglobin, g/dL 11 (10–13) 11 (8.7–12) 13 (9.9–15) 11 (10–12)

Platelet, × 104 cells/μL 33 (25–41) 38 (28–41) 29 (20–35) 32 (26–49)

CRP, mg/dL 5.5 (1.2–9.4) 8.5 (3.8–13) 1.1 (0.3–7.7) 5.5 (4.4–8.3)

IgG, g/dL 1.8 (1.3–2.0) 1.8 (1.2–2.0) 1.6 (0.9–2.1) 1.8 (1.5–2.2)

RF, IU/L 56 (21–146) 43 (8.8–146) 33 (23–143) 65 (37–301)

MPO/PR3-ANCA, IU/L 48 (17–189) 44 (17–300) 40 (9.5–82) 77 (25–221)

PSL dose

Initial PSL dose, mg/day 45 (33–60) 59 (45–63) 43 (30–59) 40 (30–50)

PSL dose at week 24, mg/day 11 (10–16) 14 (10–33) 11 (7.6–12) 13 (10–16)

PSL dose at week 52, mg/day 8 (6–11) 9 (5.5–16) 8 (4.5–9.3) 8 (6–14)

Maintenance therapy AZA, 12 (41); RTX,
6 (21); MTX, 2 (7); Tac, 2 (7)

AZA. 5 (50); Tac, 2 (20) RTX, 6 (75) AZA, 7 (64); MTX, 2 (18)

Outcome

Relapse, n (%) 10 (34) 3 (30) 3 (38) 3 (27)

Severe infection, n (%) 10 (34) 5 (50) 2 (25) 3 (27)

Death, n (%) 2 (7) 1 (10) 0 (0) 1 (9)

Continuous data are expressed as median (IQR), and categorical data as number and/or percentage. AAV ANCA-associated vasculitis, GPA granulomatosis with
polyangiitis, MPA microscopic polyangiitis, WBC white blood cell, CRP C-reactive protein, RF rheumatoid factor, PSL prednisolone, IVCY intravenous
cyclophosphamide, RTX rituximab, AZA azathioprine, MTX methotrexate, Tac tacrolimus
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monocytes (Fig. 1B-c), CD19+ B cells (Fig. 1C-c), and
plasma cells (Fig. 1D-c) were also independent on
ANCA serotype or disease phenotype.

We found that only 3 (33%) patients (cases 1, 2, 9)
showed a return of MPO/PR3-ANCA at relapse, while
the remaining 6 patients remained ANCA-negative at

Table 2 Baseline characteristics, treatment, and effects of treatment in AAV patients with responder and non-responder

Variable Without relapse, n = 20 With relapse, n = 9 P value

Baseline demographic

Age at diagnosis, years 67 (55–78) 75 (65–80) 0.27

Male, n (%) 11 (58) 2 (22) 0.070

PR3-ANCA+ GPA, n (%) 4 (20) 3 (33) 0.65

MPO-ANCA+ GPA, n (%) 3 (15) 2 (22) 0.64

ANCA− GPA, n (%) 1 (5) 0 (0) 0.38

MPO-ANCA+ MPA, n (%) 12 (60) 4 (44) 0.44

BVAS 11 (8.3–16) 12 (8.5–16) 0.74

Organ involvement

Ear, nose, throat, n (%) 7 (35) 6 (67) 0.11

CNS, n (%) 4 (20) 3 (33) 0.43

PNS, n (%) 2 (10) 3 (33) 0.13

Kidney, n (%) 10 (50) 2 (22) 0.15

ILD, n (%) 11 (55) 5 (56) 0.98

Laboratory tests

ESR, mm/h 102 (48–125) 106 (43–127) 0.77

WBC, × 103 cells/μL 9.9 (7.1–14) 9.0 (6.3–12) 0.46

Hemoglobin, g/dL 11 (9.8–13) 11 (9.4–13) 0.51

Platelet, × 104 cells/μL 33 (26–42) 35 (19–40) 0.51

CRP, mg/dL 5.2 (1.6–8.5) 8.3 (0.8–11) 0.57

IgG, mg/dL 1.8 (1.3–2.0) 1.8 (1.2–2.3) 0.55

RF, IU/L 56 (26–188) 37 (15–93) 0.28

MPO/PR3-ANCA, IU/L 79 (19–276) 40 (14–51) 0.14

PSL dose

Initial PSL dose, mg/day 50 (40–60) 35 (30–58) 0.28

PSL dose at week 24, mg/day 10 (9–13) 17 (11–35) 0.026

PSL dose at week 52, mg/day 7 (5–9) 10 (10–16) 0.0071

Immunosuppressive drugs

Induction therapy IVCY, 7 (35); RTX,
5 (25); AZA, 8 (40)

IVCY, 3 (33); RTX,
3 (33); AZA, 1 (11); MTX, 1 (11)

–

Maintenance therapy until relapse RTX, 5 (25); AZA,
10 (50); MTX, 1 (5); Tac, 2 (10)

RTX, 1 (11); AZA, 2 (22); MTX, 1 (11) –

Reinduction therapy – IVCY, 3 (33); RTX, 2 (22) –

Maintenance therapy after
reinduction therapy

– RTX, 1 (11); AZA, 2 (22); Tac, 1 (11) –

Outcome

Severe infection, n (%) 4 (20) 6 (67) 0.015

Death, n (%) 1 (5) 1 (11) 0.56

Continuous data are expressed as median (IQR), and categorical data as number and/or percentage. Continuous variables were compared using the Mann-
Whitney U test, and categorical variables using the chi-squared test. Values in bold are statistically significant (P < 0.05). AAV ANCA-associated vasculitis, GPA
granulomatosis with polyangiitis, MPA microscopic polyangiitis, CNS central nervous system, PNS peripheral nervous system, ESR erythrocyte sedimentation rate,
WBC white blood cell, CRP C-reactive protein, RF rheumatoid factor, PSL prednisolone, IVCY intravenous cyclophosphamide, RTX rituximab, AZA azathioprine, MTX
methotrexate, Tac tacrolimus
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relapse (Table 5). Of the 3 patients with ANCA return at
relapse, all were GPA with CNS involvement, and 2
(67%) were PR3-ANCA-positive.

Chronological changes in immuno-phenotyping in AAV
patients without relapse
To assess the difference between patients with and with-
out relapse on CD14++ CD16+ intermediate monocytes
and plasma cells, cell numbers in 20 patients successfully
treated without relapse were followed at diagnosis and at
weeks 4, 12, 24, and 52 of treatment (Supplementary
Fig. 2). Changes in PSL dose and BVAS were shown
(Supplementary Fig. 2A and B). The number of CD14++

CD16+ intermediate monocytes in patients remained
high compared with HCs after 52 weeks of treatment
(Supplementary Fig. 2C). In contrast, the number of

plasma cells decreased to normal levels as well as in
HCs after treatment (Supplementary Fig. 2D).

Chronological changes in humoral factors in AAV patients
with relapse
Given the significant correlation between the number of
CD14++ CD16+ intermediate monocytes and disease
activity, we evaluated serum levels of the proinflamma-
tory cytokines associated with monocyte activation,
namely IFN-γ, IL-1β, IL-6, IL-8, IL-10, and TNF-α.
Results of univariate GEE analysis for longitudinal asso-
ciations between serum cytokine levels and BVAS
showed significant associations for BVAS and IL-1β (β =
1.0, 95%CI 0.57–1.5, P < 0.001), IL-6 (β = 0.89, 95%CI
0.56–1.2, P < 0.001), IL-8 (β = 0.60, 95%CI 0.10–1.1, P =
0.018), and TNF-α (β = 0.91, 95%CI 0.43–1.4, P < 0.001)
(Table 3).
As shown, serum levels of IL-1β, IL-6, IL-8, and TNF-

α concomitantly changed with disease state (Fig. 2A)
compared to CRP and ANCA titers of the patients
(Fig. 2B). Serum cytokine measurement revealed that
changes of monocyte-derived proinflammatory cytokines
such as IL-1β, IL-6, IL-8, and TNF-α were associated
with disease state.

Correlation analysis among immune cell subsets, age,
BVAS, and serum cytokines
Additionally, we analyzed the correlation for the number of
representative immune cell subsets with age, BVAS, and
serum cytokines. The age of patients and HCs was not
matched in this study. To determine the effect of age, we
examined the correlation between age and the number of
representative immune cell subsets in AAV patients and
HCs (Supplementary Fig. 4). No significant correlation was
observed between subjects’ age and the number of cell sub-
sets, such as monocytes (Supplementary Fig. 4A), CD14++

CD16+ intermediate monocytes (Supplementary Fig. 4B),
CD19+ B cells (Supplementary Fig. 4C), and plasma cells
(Supplementary Fig. 4D). Though the number of plasma
cells seems to be increased in patients over 80 years, a pre-
vious report has shown that plasma cell counts are inversely
correlated with age [34]. Thus, age did not affect immuno-
phenotyping data in this study. Then, we showed the cor-
relation for baseline BVAS with monocytes (Supplementary
Fig. 5A), CD14++ CD16+ intermediate monocytes (Supple-
mentary Fig. 5B), CD19+ B cells (Supplementary Fig. 5C),
and plasma cells (Supplementary Fig. 5D). The numbers of
CD14++ CD16+ intermediate monocytes and CD19+ B cells
were correlated with chest and nervous system components
of BVAS, respectively. Correlations for cytokine levels with
monocytes (Supplementary Fig. 6A), CD14++ CD16+ inter-
mediate monocytes (Supplementary Fig. 6B), CD19+ B cells
(Supplementary Fig. 6C), and plasma cells (Supplementary
Fig. 6D) were shown. Though the correlations for serum

Table 3 Univariate GEE, longitudinal associations of the number
of peripheral immune cells, and levels of serum cytokines with
BVAS

BVAS

β 95%CI P value

CD4+ T 0.11 − 0.27 to 0.48 0.58

Th1 0.072 − 0.38 to 0.52 0.76

Th1 HLA-DR+ 0.090 − 0.52 to 0.69 0.77

Th2 0.092 − 0.34 to 0.52 0.67

Th2 HLA-DR+ − 0.074 − 0.75 to 0.61 0.83

Th17 0.098 − 0.15 to 0.35 0.45

Th17 HLA-DR+ 0.29 − 0.060 to 0.65 0.10

Treg − 0.041 − 0.30 to 0.22 0.76

Treg HLA-DR+ 0.030 − 0.35 to 0.41 0.88

Tfh 0.12 − 0.15 to 0.40 0.38

CD8+ T 0.23 − 0.15 to 0.62 0.24

CD8 HLA-DR+ 0.24 − 0.18 to 0.66 0.27

CD19+ B 0.32 − 0.041 to 0.69 0.082

Plasma cell 0.54 − 0.037 to 1.1 0.067

Monocyte 0.66 0.048–1.3 0.035

CD14++ CD16- 0.61 0.018–1.2 0.043

CD14++ CD16+ 0.82 0.25–1.4 0.005

CD14+ CD16+ 0.62 − 0.21 to 1.5 0.14

Eosinophil 0.56 0.026–1.1 0.040

Neutrophil − 0.066 − 0.57 to 0.44 0.80

IFN-γ 0.51 − 0.13 to 1.1 0.12

IL-1β 1.0 0.57–1.5 < 0.001

IL-6 0.89 0.56–1.2 < 0.001

IL-8 0.60 0.10–1.1 0.018

IL-10 0.51 − 0.077 to 1.1 0.088

TNF-α 0.91 0.43–1.4 < 0.001

Longitudinal relationship of the number of peripheral immune cells and
levels of serum cytokines with BVAS. Values in bold are statistically
significant (P < 0.05). Th helper T, Treg regulatory T, Tfh follicular helper T,
IFN interferon, IL interleukin
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Fig. 1 Correlation analysis between disease activity and immune cell numbers in AAV patients with relapse. Changes in A monocytes, B CD14++

CD16+ intermediate monocytes, C CD19+ B cells, and D plasma cells in AAV patients with relapse (n = 9). Duration from onset to 1st remission,
onset to relapse, and onset to 2nd remission were 7.4 (4.4–12), 15 (12–37), and 24 (19–43) weeks. A–D Lines showed the median (IQR) number of
immune cell subsets in healthy controls. A-a, B-a, C-a, D-a Individual data were shown. A, B *P < 0.05 for analysis using Wilcoxon signed rank
sum test. The difference among treatment regimens (A-b, B-b, C-b, and D-b) and disease phenotypes (A-c, B-c, C-c, and D-c) were shown by the
median and IQR and analyzed by repeated measures ANOVA and post hoc Friedman test

Table 5 Summary of 9 AAV patients with relapse

Case
no.

Age
(years)/
sex

Induction Tx At onset At remission At relapse

ANCA/disease Organ involvement ANCA status Organ involvement ANCA status

Case 1 38/M PSL+IVCY PR3+ GPA CNS, ENT Negative CNS, ENT Positive

Case 2 57/F PR3+ GPA CNS, ENT Negative CNS, ENT Positive

Case 3 74/M MPO+ MPA ILD, kidney Negative ILD, kidney Negative

Case 4 76/F PSL+RTX MPO+ MPA ILD, kidney, PNS Negative ILD, kidney, PNS Negative

Case 5 78/F MPO+ GPA ENT, ILD, PNS Negative ILD, PNS Negative

Case 6 75/F MPO+ MPA PNS Negative PNS Negative

Case 7 90/M PSL+AZA MPO+ MPA ILD, kidney Negative Kidney Negative

Case 8 82/F PSL monotherapy PR3+ GPA ENT, ILD Negative ILD Negative

Case 9 72/F PSL monotherapy MPO+ GPA CNS, ENT Negative CNS, ENT Positive

PSL prednisolone, IVCY intravenous cyclophosphamide, RTX rituximab, AZA azathioprine, MPA microscopic polyangiitis, GPA granulomatosis with polyangiitis, ENT
ear, nose, throat, PNS peripheral nervous system, ILD interstitial lung disease
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cytokine levels with these cell subsets were not statistically
significant, they tend to be longitudinally associated with
disease activity.

Discussion
This study examined baseline and chronological changes
in comprehensive immuno-phenotyping in patients with
AAV. We revealed that CD14++ CD16+ intermediate
monocytes and plasma cells were strongly correlated
with disease relapse. Changes in CD14++ CD16+ inter-
mediate monocytes and plasma cells were more sensitive
markers of disease relapse than changes in MPO/PR3-
ANCA titer. In particular, the number of CD14++

CD16+ intermediate monocytes at relapse was signifi-
cantly greater than that in remission or in HCs. Taken
together, our data suggest that the number of peripheral
CD14++ CD16+ intermediate monocytes may be useful
for evaluating disease activity in AAV.
Although B cell count and ANCA titer increase are

shown to be associated with relapse [35, 36], these are
not recommended for monitoring treatment [3]. Von
Borstel et al. have reported CD27+ CD38hi B cell

frequencies during remission were associated with the
risk for relapse in GPA patients, suggesting more specific
cell subsets may potentially be markers associated with
disease relapse [37]. We showed that changes in plasma
cells were strongly correlated with the reactivation of
CNS disease. This hypothesis is supported by our recent
finding of a significant correlation between circulating B
cells and the CNS component of BVAS [21, 38]. CNS
lesion may be a good indicator of the need for B cell
depletion therapy in AAV.
Here, we showed that changes in CD14++ CD16+

intermediate monocytes were remarkably associated
with disease relapse in AAV. Although CD14++ CD16+

intermediate monocytes account for a relatively small
fraction of total monocytes in peripheral blood (about
8% of monocytes in HC) [21], the proportion of CD14++

CD16+ intermediate monocytes is increased to 15%
among total monocytes in AAV patients [21, 39]. We
validated the former analyses [21, 39] and identified
CD14++ CD16+ intermediate monocyte as the most
useful marker of disease relapse in AAV using compre-
hensive immuno-phenotyping. Though CD14++ CD16+

Fig. 2 Changes in humoral factors in AAV patients with relapse. A Serum cytokines of (a) IFN-γ, (b) IL-1β, (c) IL-6, (d) IL-8, (e) IL-10, and (f) TNF-α,
and B laboratory findings of (a) CRP and (b) ANCA titer in AAV patients with disease relapse (n = 9). A Lines showed the median (IQR) number of
immune cell subsets in healthy controls. A, B Individual data were shown. *P < 0.05 for analysis using Wilcoxon signed rank sum test
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intermediate monocytes expansion have been reported
in other inflammatory diseases such as rheumatoid arth-
ritis [40], van Sleen et al. reported that CD14++ CD16−

classical monocytes expanded in GCA rather than
CD14++ CD16+ intermediate monocytes [41]. Our recent
report revealed that LVV disease activity was not con-
sistent with changes of CD14++ CD16+ intermediate
monocytes [42]. In combination with findings that
monocytes and macrophages are frequently found in
vascular infiltrates of AAV patients [43], CD14++ CD16+

intermediate monocytes may play a characteristically im-
portant role in the pathogenesis of AAV. Interestingly,
the number of CD14++ CD16+ intermediate monocytes
remained elevated in AAV patients who had achieved
remission (Fig. 1B and Supplementary Fig. 2C). Consid-
ering the elevated level of CD14++ CD16+ intermediate
monocytes was independent of the treatment regimen,
the existing treatments might not be sufficient to achieve
deep and stable remission state in AAV. Our findings
raise the possibilities that pathogenic CD14++ CD16+

intermediate monocytes are resistant to the current
treatments and controlling the functions of this cell sub-
set may lead to reduction of relapse in AAV. Our study
suggests that CD14++ CD16+ intermediate monocytes
may be one of the novel therapeutic cell targets against
AAV.
While the upstream of CD14++ CD16+ intermediate

monocytes expansion or their molecular effect in AAV
pathogenesis is beyond the scope of this manuscript,
CD16, a receptor for immunoglobin gamma Fc region
III, may have a key role in the pathogenesis of AAV.
The proportion of CD16 on intermediate monocytes
correlates with MPO expression on these cells [44], pro-
viding an insight into the possible activation of these
cells by MPO-ANCA. ANCA has been shown to stimu-
late oxygen radical production and to produce inflam-
matory cytokines from monocytes [45, 46]. We found
that the levels of IL-1β, IL-6, IL-8, and TNF-α were
associated with disease activity. CD14++ CD16+ inter-
mediate monocyte is the most proinflammatory mono-
cyte subset and also involved in cell differentiation,
including development from naive lymphocyte into
Th17 [47]. Considering major sources of these cytokines
are activated monocytes and macrophages, CD14++

CD16+ intermediate monocytes are key effectors in AAV
pathogenesis through the production of proinflamma-
tory cytokines.
Our study had several limitations. First, this is a study

with a small sample size and with a short observation
period. Second, treatment was not randomized and
depends on the attending physician. Third, our cohort in-
cluded relatively less kidney recurrence, whereas previous
trials such as RITUXVAS and RAVE mainly focused on
renal vasculitis [4, 5]. Last, we did not show that the

changes in CD14++ CD16+ intermediate monocytes were
specific for AAV because we did not have disease controls.
For these reasons, this report represented a pilot study that
was designed for discovery analysis and which had inad-
equate power to incorporate an adjustment for multivariate
analysis. Further studies of additional immuno-phenotyping
evidence are required to strengthen our findings and make
it possible to predict disease relapse in AAV.

Conclusions
Our findings demonstrate CD14++ CD16+ intermediate
monocyte counts reflect the disease activity of AAV and
will aid to distinguish active patients from those in re-
mission. Chronological changes in CD14++ CD16+ inter-
mediate monocyte counts can be a marker of disease
relapse in AAV patients.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13075-020-02234-8.

Additional file 1: Supplementary Fig. 1. Immuno-phenotyping strat-
egy using antibody staining. Details of the gating strategies of (A) Panel 1
(helper T cell and follicular helper T cell), (B) Panel 2 (regulatory T cell), (C)
Panel 3 (B cell) and (D) Panel 4 (monocyte, neutrophil and eosinophil).

Additional file 2: Supplementary Fig. 2. Chronological changes in
immuno-phenotyping in AAV patients without relapse. Changes in (A)
PSL dose, (B) BVAS, (C) CD14++ CD16+ intermediate monocytes and (D)
plasma cells in AAV patients without relapse (n = 20). Lines showed the
median (IQR) number of immune cell subsets in healthy controls.

Additional file 3: Supplementary Fig. 3. Changes in humoral factors
according to treatment, ANCA serotype or disease subtype. Serum levels
of (A) IFN-γ, (B) IL-1β, (C) IL-6, (D) IL-8, (E) IL-10, (F) TNF-α, (G) CRP and (H)
ANCA titer in patients with relapse (n = 9). (A-F) Lines showed the median
(IQR) level of cytokines in healthy controls. Difference among treatment
regimens (A-b, B-b, C-b, D-b, E-b, F-b, G-b and H-b) and disease pheno-
types (A-c, B-c, C-c, D-c, E-c, F-c, G-c and H-c) were analyzed by repeated
measures ANOVA and post-hoc Friedman test.

Additional file 4: Supplementary Fig. 4. Correlation between age and
number of representative immune cell subsets. Correlation between age
and the number of (A) monocytes, (B) CD14++ CD16+ intermediate
monocytes, (C) CD19+ B cells and (D) plasma cells. (A-a, B-a, C-a, D-a) HC;
(A-b, B-b, C-b, D-b) AAV. Pearson’s correlation coefficient was used.

Additional file 5: Supplementary Fig. 5. Correlation for baseline BVAS
with representative immune cell subsets. Correlation for baseline BVAS
with (A) monocytes, (B) CD14++ CD16+ intermediate monocytes, (C)
CD19+ B cells and (D) plasma cells. (a) Total BVAS, and components of
BVAS for (b) ear, nose, throat, (c) nervous system, (d) renal and (e) chest
were shown. Pearson’s correlation coefficient was used.

Additional file 6: Supplementary Fig. 6. Correlations for cytokine
levels with representative immune cell subsets. Correlations for cytokine
levels with (A) monocytes, (B) CD14++ CD16+ intermediate monocytes,
(C) CD19+ B cells and (D) plasma cells. Correlations for each cytokine of
(a) IFN-γ, (b) IL-1β, (c) IL-6, (d) IL-8, (e) IL-10 and (f) TNF-α are shown. Pear-
son’s correlation coefficient was used.

Additional file 7: Supplementary Table 1. Antibodies used in FACS
analysis.
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