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Abstract

Background: Progesterone receptor (PR) affects immunomodulation, and lack of PR in osteoprogenitor cells
primarily affects pathways associated with immunomodulation, especially in males. In this study, we selectively
deleted PR from osteoprogenitor cells using Prx1-Cre to evaluate the tissue-specific effects of PR on the
pathegenesis of inflammatary arthritis (IA).

Methods: Collagen-induced arthritis (CIA) was used as an IA animal model. Both male and female PRΔPrx1 mice and
their wild-type (WT) littermates were immunized with collagen II (CII) emulsified complete Freund’s adjuvant (CFA).
Joint erosion, inflammation, and cartilage damage were assessed using a semiquantitative histologic scoring system.
Bone volume and erosions in knee and ankle joints were quantitated using microCT and histology.

Results: Bone erosions developed in both paw joints in 37.5% and 41.7% of the WT and PRΔPrx1 female mice and
in 45.4 and 83.3% of the WT and PRΔPrx1 male mice, respectively. Also, both joint damage and subchondral bone
erosions were significantly more severe in male PRcKO-CIA mice than in male WT-CIA mice. Female PRΔPrx1 mice
also developed higher bone loss in the knee joints than the KO-normal or WT-CIA females although with less
severity compared to the male mice.

Conclusions: The presence of PR in osteoprogenitor cells decreased the development of collagen-induced arthritis
and might help to explain the sex differences observed in human inflammatory arthritis.
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Introduction
Rheumatoid arthritis (RA) is a systemic autoimmune dis-
ease that can affect many organ systems, and inflamma-
tion of synovial tissue causes activation of inflammatory
cytokines that destroy both cartilage and periarticular

bone [1–3]. About 3 million Americans suffer from RA,
with nearly three times more women than men affected
[4–8]. In women, RA most commonly begins between
the ages of 30 and 60 years, but in men, RA often begins
later in life. The mechanism for this sexual dimorphism
in RA is not clear. Most studies of sex-specific factors af-
fecting RA have focused on sex hormones due to the ob-
servation that RA activity is reduced in females during
pregnancy and that male RA patients generally have a
less severe course of disease and better response to
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therapy [5, 9, 10]. Estrogen is reported to have both pro-
inflammatory and anti-inflammatory effects on the im-
mune system while both progesterone and androgen are
anti-inflammatory [11–19]. The effects of hormones are
primarily regulated through their hormonal receptors.
The presence and proportion of hormone receptors in
different tissues and cells, including fibroblasts, chondro-
cytes, and bone cells, may define their roles in the sexu-
ally dimorphic pathogenesis of RA [20–27].

Potential effects of progesterone on arthritis
Progesterone is a sex-related steroid that has been stud-
ied extensively for its effects on the reproductive system.
Progesterone’s actions are mainly mediated through the
progesterone nuclear receptors A and B (PR-A and B),
which are ligand-regulated transcription factors [28].
The presence or absence or relative proportion of PR in
different tissues may explain the PR’s sexual dimorphic
roles in these tissues [29–31]. In contrast to the estrogen
receptor, PR’s role may be more important in immuno-
modulation in female-dominant diseases such as sys-
temic lupus erythematosus, rheumatoid arthritis, and
osteoarthritis [32–34]. However, the immunomodulatory
role of PR in musculoskeletal tissue is not well under-
stood. PR is expressed by cultured osteoblasts, osteo-
clasts [35–37], and chondrocytes [38] and is present
in vivo in mouse bone [37, 39]. Utilizing genetic fate
mapping and immunohistochemistry techniques, we ob-
served PR (esp. PR-B) expression in articular cartilage
and in the growth plate as well as in subchondral bone
[39]. We also noted that in PR selective deletion in
Prx1+ cells, which give rise to both osteoblasts and
chondrocytes, the PRΔPrx1 mice had significantly higher
trabecular bone mass as compared to their WT litter-
mates [39]. Additionally, conditional PR deletion in the
Prx1+ osteoprogenitor cells significantly suppressed im-
munomodulatory pathways, especially in the males. The
disease pathway analyses and RNA-Seq study suggested
that rheumatoid arthritis is a potential disease target for
PR modulation [34]. Since the lack of PR signaling in the
osteoprogenitor cells (OPC) regulated immunomodula-
tion pathways [34], we performed this study to evaluate
the role of PR in the PRΔPrx1 mice using a CIA model.

Methods
Mice and collagen-induced arthritis (CIA) model
PR-flox mice were obtained from Baylor College of
Medicine (Houston, TX, USA). A targeting vector de-
signed to replace part of exon 2 of the PR gene with a
selectable marker was employed to create a strain of
mice carrying a conditional null PR allele [40]. Prx1-Cre
mice were purchased from the Jackson Laboratory.
Eight-week-old female and male mice were immunized
with 100 μg chicken collagen in completed Freund’s

adjuvant (CFA) (Chondrex Inc. Redmond WA USA). On
day 21, the mice were boosted with 100 μg chicken colla-
gen in in-completed Freund’s adjuvant (IFA) subcutane-
ously. On day 24, all mice received 50 μg LPS E. coli
O111: B4 (Sigma St. Louis, MI USA) via intraperitoneal
injection (i.p.) in normal saline. The mice were eutha-
nized on day 50. The onset of the CIA usually occurs on
day 26, after initial immunization, and the disease model
generally lasts 40 days [41–45].
PCR-based strategies were used for genotyping mouse

genomic DNA. All animal work was done in compliance
with the guiding principles of UC Davis’s “Care and Use
of Animals.” Mice were housed in the animal facility
under strictly controlled environmental conditions (12-h
light/dark cycle, room temperature 22 °C), and fed ad
libitum (food and water). The Institutional Animal Care
and Use Committee of the University of California Davis
approved the animal protocol.

T cell stimulation for FACS
Total mononuclear cells were collected from peripheral
blood using the Ficoll-Paque density gradient method.
The cells were then incubated with phorbol 12-myristate
13-acetate (PMA) in combination with ionomycin for
3 days before running fluorescence-activated cell sorting
(FACS). We used the following key markers for activated
T cells CD3/PerCP-Cy5.5 (Total T), CD25/PE-CF594,
and CD45RO/PE-Cy7 (R &D Systems, Minneapolis,
MN, USA).

Measurements of inflammation, bone erosion, and
cartilage damage
Whole knee and ankle joints were fixed, decalcified, em-
bedded in paraffin, and stained with hematoxylin or
Safranin-O. Inflammation was scored semi-quantitatively
from 0 to 5: 0 = normal; 1 =minimal infiltration of in-
flammatory cells and/or mild edema; 3 =moderate infil-
tration; 4 = marked infiltration; and 5 = severe
infiltration. For bone erosion, joint sections were stained
for tartrate-resistant acid phosphatase (TRAP) and coun-
terstained with hematoxylin (Sigma St Louis, IL, USA).
A score of 0–5 was assigned for bone erosion: 0 = nor-
mal; 1 =minimal (small areas of bone resorption, not
readily apparent on low magnification); 2 =mild (more
areas of resorption in trabecular and cortical bone); 3 =
moderate (obvious bone resorption of trabecular and
cortical bone, without defects in cortex or loss of tra-
beculae); 4 =marked (full-thickness defects in cortical
bone and marked trabecular bone loss); and 5 = severe
(defects in the entire cortex, marked trabecular bone
loss) [46–48]. Total TRAP+ cells within the subchondral
area were counted and presented as TRAP+ cell/bone
surface. Cartilage damage was calculated by the loss of
Safranin-O staining that was scored on a semi-
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quantitative scale from 0 to 4: 0 = intact; 1 = minor (<
10%); 2 =moderate (10–50%); 3 = high (50–80%); and
4 = severe (80–100%) [49, 50]. Two blinded observers
performed all the scorings. Data are presented as the
average of the scores of both observers.

Bone mass measurements by microCT
The right knee joints including both the distal femurs
(DFM) and the proximal tibiae were scanned and ana-
lyzed using VivaCT 40 (Scanco Medical, Bassersdorf,
Switzerland) with a voxel resolution of 10 μm in all three
spatial dimensions and a mono-energetic (70 Kev) X-ray
source. We evaluated the entire knee covering a total of
645 mm in length centered around the knee joint to ob-
tain total knee bone volume/tissue volume (BV/TV) ra-
tio [34, 51, 52] using 3D image-registration schemes
Gaussian filters of sigma = 0.8, support = 1, and thresh-
old = 180 for total knee and DFM. Gaussian filters of
sigma = 1, support = 2, and threshold = 280 were applied
to register the paw.

Knee histopathology
The left knee joints were fixed in 10% phosphate-
buffered saline formalin for 2 days, decalcified in 10%
EDTA for 3 weeks, and embedded in paraffin. Sections
were stained with Safranin-O—Fast green for measure-
ment of articular cartilage thickness, subchondral bone
plate thickness, subchondral trabecular bone number
and diameter, and cartilage content using Bioquant Im-
aging software (Bioquant Imaging System, Nashville, VA
USA) [51, 52].

Statistical analysis
The results are expressed as mean ± standard deviation for
bone structure measures, bone turnover, and bone strength
variables. Two-way ANOVA was used to account for geno-
type and sex. If significant differences were observed, then a
Sidak’s multiple comparisons test was used to assess pair-
wise comparisons. A value of p < 0.05 was considered statis-
tically significant. Data were analyzed using the GraphPad
Prism 8 software package (La Jolla, CA, USA).

Results
Mice with PR conditionally knocked out in
osteoprogenitor cells (OPC) had higher systemic
activation of T cells and showed higher incidence of
arthritis
We found very low levels of circulating activated T cells
marked by CD3e+, CD69+, and CD25+ in the WT-CIA
controls, especially in the female WT-CIA mice, at prox-
imately 0.1% of the total mononuclear cells. On the
other hand, both female and male PRΔPrx1-CIA mice had
significantly higher circulating levels of activated T cells
as compared to the WT-CIA mice at day 50 (Fig. 1a).

The incidence of arthritis (defined as developing bone
erosions viewed by 3D microCT reconstructions of paw
images) was 37.5% and 41.7%, respectively, in the female
WT and PRΔPrx1-CIA mice and 45.4 and 83.3%, respect-
ively, in the male WT and PRΔPrx1-CIA mice (Fig. 1b).
Hence, we observed an increase in systemic inflamma-
tion and development of arthritis in the paws in mice
lacking PR in the MSCs, highlighting a possible role of
PR in systemic as well as local tissue involvement during
inflammatory arthritis.

PRΔPrx1 mice with collagen-induced arthritis had higher
levels of bone destruction
MicroCT and histochemical analyses were used to assess
the degree of bone erosion in the ankle and the knee
joints in WT-CIA and PRΔPrx1-CIA mice and the control
mice which did not receive immunizations. In the paws,
total bone volume did not differ in WT-CIA mice com-
pared to their WT-non-CIA controls, but was reduced
significantly in male PRΔPrx1-CIA mice compared to the
PRΔPrx1-non-CIA male controls (Fig. 2a). Areas of bone
erosion were present on microCT images of paws, espe-
cially in the distal and proximal ends of the metacarpus
as well as in the carpus, in the male WT-CIA and
PRΔPrx1-CIA mice (Fig. 2b, white arrows). Compared to
the non-CIA mice, female PRΔPrx1-CIA, male WT-CIA,
and male PRΔPrx1-CIA mice had reduced total bone vol-
ume in knee joints. The female PRΔPrx1-CIA had signifi-
cantly higher bone loss in the knee joint compared to
the female WT-CIA mice (Fig. 3a). The non-CIA
PRΔPrx1 mice had smooth and continuous bone surfaces
in their knees, while focal peri-articular bone erosions
were apparent in both the female and male PRΔPrx1-CIA
mice (Fig. 3b, white arrows). Histologic measurements
confirmed the absence of trabecular bone loss at the
femoral subchondral bone in the female and male WT-
CIA mice (Fig. 4a–c). Both female and male PRΔPrx1-
CIA mice had lower trabecular bone volume compared
to their sex-matched PRΔPrx1-non-CIA and WT-CIA
mice, with similar subchondral cortical bone plate thick-
ness across all the groups (Fig. 4c). TRAP histochemistry
was used to determine the numbers of osteoclasts at the
distal femurs, with a focus on the subchondral bone ero-
sions. TRAP+ cell numbers were similar in female and
male WT-CIA mice compared to their WT-normal con-
trols. The female PRΔPrx1-CIA mice had a trend of in-
creased TRAP+ cells in the subchondral bone area but
did not reach statistical significance when compared to
PRΔPrx1-normal control mice. In contrast, more TRAP+
cells were present on the femoral subchondral trabecular
bone surface in the male PRΔPrx1-CIA mice compared to
male normal and male WT-CIA mice (Fig. 5, black ar-
rows). Taken together, these results suggest that both fe-
male and male PRΔPrx1 mice developed more severe
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bone loss in the knee joints. The male PRΔPrx1 mice are
more susceptible to bone loss in the paw and developed
higher bone erosion in the knee joints compared to their
sex-matched WT-CIA mice.

Male PRΔPrx1 mice with collagen-induced arthritis had
more cartilage damage than WT-CIA control
Cartilage destruction and inflammation were assessed on
H&E- and Safranin-O-stained sections. The overall
semi-quantitative scoring on the H&E-stained sections
revealed more inflammation and erosions in the male
PRΔPrx1-CIA mice compared to WT-CIA mice (Fig. 6).
Examination of Safranin-O-stained knee samples re-
vealed a loss of articular cartilage, especially in the male
CIA mice (Fig. 4a, b). In the male PRΔPrx1-CIA mice,
there was an almost complete loss of articular cartilage
in areas of subchondral bone erosion (Figs. 4 and 6). A
similar area of subchondral bone erosion and articular
cartilage loss was present in the male WT-CIA as well.
Cartilage loss was noted adjacent to inflamed synovium
tissues, especially in male WT and PRΔPrx1-CIA mice
(Fig. 6a, b). The semi-quantitative erosion and cartilage
damage scores were higher in the male PRΔPrx1-CIA
mice than in the WT-CIA mice (Fig. 6c).

Discussion
Mice lacking progesterone receptor signaling in the
osteoprogenitor cells were more susceptible to collagen-
induced arthritis, especially male mice. The PRΔPrx1-CIA
mice, especially the males, had a significantly higher in-
cidence of arthritis, joint inflammation, bone erosion,
and cartilage damage compared to the normal male
PRΔPrx1 mice or WT-CIA mice. Our findings indicate
that under “normal” conditions, the presence of PR in
osteoprogenitor cells might be protective against inflam-
matory arthritis and may also contribute to the sex dif-
ferences that are observed in RA patients [53–55].

A number of susceptibility genes for RA have been
previously identified. The human leukocyte antigen
(HLA) is a genetic site controlling immune responses in
RA [56, 57]. Several genes outside the HLA region, in-
cluding Stat4, the TRAF1-C5 locus, and PTPN22, have
been reported to be associated with activation and pro-
gression of inflammation in RA [58–62]. Sex disparities
in genetic susceptibility to RA are understudied, and
only a polymorphism in the Cyb5a gene, which is related
to androgen synthesis, has been found to be associated
with risk for RA in women but not in men [63]. Recent
studies have also suggested a role for epigenetic modifi-
cations in the activation and aggressiveness of synovial
fibroblasts [64–67] and the X-encoded genes, Timp1
and IL-9R in RA [68]. Some of these epigenetic modifi-
cations correlate with X-linked miRNA, and the pres-
ence of the second X chromosome in females may affect
miRNA expression levels, potentially helping to explain
sex-related autoimmunity [69, 70]. Most of these studies
on sex-specific factors affecting RA have focused on the
potential effects of sex hormones due to the observation
that RA improves during pregnancy and that male RA pa-
tients generally have a less severe course of illness and bet-
ter response to therapy [5, 9, 10]. Estrogen has been
reported to have both pro-inflammatory and anti-
inflammatory effects on the immune system while both
progesterone and androgen are anti-inflammatory [11–19].
The effects of hormones are mainly regulated through their
hormonal receptors. The presence and proportion of estro-
gen and androgen receptors in different tissues and cells,
including fibroblasts, chondrocytes, and bone cells, might
define their roles in the sexually dimorphic pathogenesis of
RA [20–27]. We and others have found PR expressed in
growth plate chondrocytes, osteoclasts, and osteoblasts,
and PR has a critical role in peak bone mass determination
in mice [37, 71, 72]. Loss of PR signaling in osteoprogeni-
tor cells regulates key signaling pathways for immune re-
sponse, especially in males [34]. We identified PR-targeted

Fig. 1 Mice with PR conditionally knocked out in osteoprogenitor cells had higher circulating T cells and higher arthritis incidence in male mice.
(a) Mononuclear cells were obtained from peripheral blood in WT-CIA or PRΔPrx1-CIA and subjected to FAC determination of CD3e+, CD69+, and
CD25+ T-cells. (b) The incidence of arthritis was scored using 3D images of paws showing bone erosion at least in one of the paws. *p < 0.05
between indicated groups
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genes that regulated sex differences, including an “X-in-
active specific transcript,” Xist, Mtus2, Aldhla7/1, Tusc5,
Cd300c, and Pde3a [34]. The upregulation of Xist is associ-
ated with chronic inflammation and pain in females with
complex regional pain syndrome [73] and contributes to
RA progression [74]. Cd300c and Pde3a are over-
presented in RA patients [75, 76] and are associated with
inhibition of T cell immunity [77] or response to TNF in-
hibitors in RA patients [78]. Our prior and current findings

[34, 37, 39, 71] suggest that PR may regulate susceptibility
to inflammatory arthritis in mice.
The presence of marginal bone erosions, detected by

imaging, predicts a more severe disease course with more
disability and increased morbidity. The significance of ero-
sions in RA has been the focus of the development and
approval of several agents for modifying the course of RA
and has been validated in clinical trials as being able to re-
duce structural joint damage, including bone erosion and

Fig. 2 Mice with PR conditionally knocked out in osteoprogenitor cells had a lower bone mass in the paws of male PRΔPrx1-CIA mice. (a) The
total bone volume of the right paws was measured by microCT in WT and PRΔPrx1 normal or CIA mice. (b) Representative microCT paw images
from WT or PRΔPrx1 normal or CIA mice. White arrows illustrated bone erosion. *p < 0.05 between indicated groups. Scale bar = 1 mm
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cartilage degradation [79, 80]. The bone erosions in RA
show a predilection for specific anatomic sites such as the
radial aspects of finger joints, while the ulnar aspects are
relatively spared [81]. These focal erosions typically
emerge at the site at which the synovium comes into dir-
ect contact with the bone which is known as bare areas.
Anatomical factors that predispose these skeletal sites for
erosion include the presence of mineralized cartilage, the
insertion of ligaments at the bone surface, and inflamed
tendon sheaths that enable the spread of inflammation
from the tendon to the articular synovium. Articular

erosion at these “bare areas” represents localized bone loss
from osteolysis, which resulted from an imbalance in
which bone resorption by osteoclasts is predominant over
bone formation by osteoblasts. Once established, these
bone erosions rarely repair despite the use of potent bio-
logic therapeutic strategies including biologics such as
TNF, IL-1, or IL-6 receptor blockade [82–85]. Aberrant
repair of erosions appeared as sclerosis with new bone ap-
position at the base of the erosion and might involve the
juxta-articular bone marrow. Adipose tissue might popu-
late the erosive area. Bone erosion seemed to correlate

Fig. 3 Mice with PR conditionally knocked out in osteoprogenitor cells had a lower bone mass in the knee joints of PRΔPrx1-CIA mice. (a) Total
bone volume/tissue volume of right knees was measured by microCT in WT and PRΔPrx1 normal or CIA mice. (b) Representative microCT knee
images from WT or PRΔPrx1 normal or CIA mice. White arrows indicated bone erosions. *p < 0.05 between indicated groups
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Fig. 4 PRΔPrx1-CIA mice had lower subchondral trabecular bone volume. (a) Representative Safranin-O-stained knee histologic images from
female or (b) male in WT or PRΔPrx1 normal or CIA mice. (c) Quantitative measurements of subchondral trabecular bone or cortical plate thickness
at the femoral epiphyses. Black stars indicate inflamed synovial tissue. *p < 0.05 between indicated groups. Scale bar = 100 μm
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Fig. 5 Male PRΔPrx1-CIA mice had higher amounts of surface osteoclasts at the distal femoral subchondral bone. (a) Representative TRAP-stained knee
histologic images from female or (b) male in WT or PRΔPrx1 normal or CIA mice. (c) Quantitative measurements of TRAP+ surface osteoclasts at the
distal femoral subchondral bone. Black arrows illustrate TRAP+ cells at bone surfaces. *p < 0.05 between indicated groups. Scale bar = 100 μm
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with on-going inflammation. Our study provides add-
itional information to better understand the potential PR
regulation of the inflammation-induced bone resorption
coupling mechanism in the process of joint and bone
damage and how potentiation of this coupling from lack
of PR signaling contributes to bone and joint tissue loss in
RA in a sex-dependent manner.
RA is a systemic autoimmune disease that induces in-

flammation of the synovial tissue and causes activation
of inflammatory cytokines that destroy both cartilage
and peri-articular bone. One of the main shortcomings
for the study was the lack of measurements of cytokines
and chemokines systemically or locally in the joint tis-
sue. Therefore, we could not directly determine if the PR
regulation of joint inflammation and bone loss were dir-
ectly associated with changes in the cytokine/chemokine
levels during the pathogenesis of IA or with the lack of
PR expression in the osteoprogenitor cells. Nevertheless,
our data suggested that PR might alter the susceptibility

to inflammation, cartilage damage, and bone destruction
in RA.

Conclusions
In conclusion, lack of PR in osteoprogenitor cells in-
creased susceptibility to IA, especially in male mice. Our
findings indicate that the presence of PR in osteopro-
genitor cells decreases the development of collagen-
induced arthritis and might also help to explain sex dif-
ferences observed in rheumatoid arthritis.
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