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Comparative transcriptomic analysis
identifies distinct molecular signatures and
regulatory networks of chondroclasts and
osteoclasts
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Abstract

Background: Chondroclasts and osteoclasts have been previously identified as the cells capable of resorbing
mineralized cartilage and bone matrices, respectively. While both cell types appear morphologically similar, contain
comparable ultrastructural features, and express tartrate-resistant acid phosphatase (TRAP), however, no information
is available about the genomic similarities and differences between osteoclasts and chondroclasts.

Methods: To address this question, we laser captured homogeneous populations of TRAP-positive cells that
interact with bone (osteoclasts) and TRAP-positive cells that interact with mineralized cartilage (chondroclasts) on
the same plane from murine femoral fracture callus sections. We then performed a global transcriptome profiling of
chondroclasts and osteoclasts by utilizing a mouse genome Agilent GE 4X44K V2 microarray platform. Multiple
computational approaches and interaction networks were used to analyze the transcriptomic landscape of
osteoclasts and chondroclasts.

Results: Our systematic and comprehensive analyses using hierarchical clustering and principal component analysis
(PCA) demonstrate that chondroclasts and osteoclasts are transcriptionally distinct cell populations and exhibit
discrete transcriptomic signatures as revealed by multivariate analysis involving scatter plot, volcano plot, and
heatmap analysis. TagMan gPCR was used to validate the microarray results. Intriguingly, the functional enrichment
and integrated network analyses revealed distinct Gene Ontology terms and molecular pathways specific to
chondroclasts and osteoclasts and further suggest that subsets of metabolic genes were specific to chondroclasts.
Protein-protein interaction (PPI) network analysis showed an abundance of structured networks of metabolic
pathways, ATP synthesis, and proteasome pathways in chondroclasts. The regulatory network analysis using
transcription factor-target gene network predicted a pool of genes including ETV6, SIRT1, and ATF1 as chondroclast-
specific gene signature.
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Conclusions: Our study provides an important genetic resource for further exploration of chondroclast function
in vivo. To our knowledge, this is the first demonstration of genetic landscape of osteoclasts from chondroclasts
identifying unique molecular signatures, functional clustering, and interaction network.
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Background

The skeleton is a specialized and dynamic organ that
undergoes continuous regeneration and remodeling. The
process of bone modeling is responsible for the forma-
tion and maintenance of the shape of bone [1]. The cells
that are responsible for bone remodeling are the osteo-
clasts, which are originated from the fusion of
hematopoietic cells of the monocyte lineage [2]. The os-
teoclasts are central mediators of both normal bone re-
modeling and pathologies associated with excessive bone
resorption [3]. The mature osteoclast is a large multinu-
cleated, highly polarized cell with a convoluted plasma
membrane region called the ruffled border, which facili-
tate the efficient resorption of bone [4]. During this
process, osteoclasts firmly attach to bone surface,
polarize their structure, seal the resorption compartment
from the extracellular space, and secrete acid and a var-
iety of degradative enzymes into the resorption
compartment.

In addition to the osteoclasts, chondroclasts form on
calcified cartilage to resorb mineralized cartilage matrix
during endochondral ossification [5]. The majority of
our knowledge about chondroclasts comes from ultra-
structural analyses [6, 7]. Chondroclasts appear to be
similar to osteoclasts in that they are multinucleated;
contain similar ultrastructural features such as similar
nuclear profiles, abundant mitochondrial profiles, and
intracytoplasmic vesicles; and express tartrate-resistant
acid phosphatase (TRAP) which are mainly secreted in
the ruffled border area of both chondroclasts and osteo-
clasts [5]. Specific differences include a decreased size of
the ruffled border and clear zone as well as increased ac-
cumulation of TRAP in chondroclasts relative to osteo-
clasts. Evidence that osteoclasts and chondroclasts stem
from the same myeloid progenitors came from genetic
mouse models in which Receptor Activator of NF-kB
(RANK) or RANK-ligand (RANKL) were abrogated. In
these mutants, neither osteoclasts nor chondroclasts
form [8, 9]. Likewise, it has been demonstrated that
RANKL is expressed at sites of osteoclast and chondro-
clast formation [10]. This hypothesis is further sup-
ported by the finding that osteopetrotic humans also
have defects in both chondroclasts and osteoclasts [11].

The previous studies provided limited evidence that
osteoclasts and chondroclasts are identical, except in
their substrate. The other study has suggested that there

may be differential expression of matrix metalloprotein-
ases (MMP) in chondrocytes and osteoclasts [12]. How-
ever, these studies have almost been limited to only
morphological, ultrastructural, and rudimentary expres-
sion analysis and have therefore not addressed the
genome-wide transcriptomic landscape and molecular
differences between osteoclasts and chondroclasts. There
exists a significant gap in knowledge about how nearby
substrates (the bone or calcified cartilage) regulate their
function and behavior of osteoclasts and chondroclasts.
We hypothesize that the adjacent substrate near osteo-
clasts and chondroclasts influences the expression levels
of genes implicated in a variety of regulatory pathways
and biological processes and hence represents transcrip-
tionally distinct population. Therefore, a genome-wide
profiling for transcriptional changes is required to over-
view the molecular processes and pathways and identify-
ing set of putative gene signature specific to osteoclasts
and chondroclasts.

In this study, we performed global transcriptome pro-
filing of chondroclasts and osteoclasts by utilizing a
mouse genome Agilent GE 4X44K V2 microarray plat-
form. The systemic and comprehensive transcriptome
analyses aid in our understanding of genetic diversity
and molecular functionality of osteoclasts and chondro-
clasts in vivo. Additionally, the functional enrichment
and integrated network analyses revealed distinct Gene
Ontology terms and molecular pathways specific to
chondroclasts and osetoclasts. The regulatory network
analysis using transcription factor-target gene network
predicts a pool of genes including ETV6, SIRT1, and
ATF1 as chondroclast-specific gene signature. Our study
provides an important genetic resource for further ex-
ploration of chondroclast function in vivo. To our
knowledge, this is the first demonstration of unique mo-
lecular signatures that differentiate osteoclasts from
chondroclasts.

Methods

Fracture model for generation of TRAP-positive cells

A closed femoral fracture model was used to generate an
early-stage callus containing both calcified cartilage
matrix and bony callus. Twelve-week-old male C57BL/6
] mice (stock no: 000664, Jackson Laboratory, Bar
Harbor, ME) were used. Animals were given Buprenor-
phine SR (0.1 mg/kg body weight) as analgesia by
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subcutaneous injection prior to the procedure, and once
a day for 3 days following the fracture in accordance
with a protocol approved by the Animal Care Commit-
tee at UCHC (University of Connecticut Health Center,
Farmington, CT). Mice were anesthetized with 4% iso-
flurane prior to the procedure, and left leg was shaved
and cleaned with 70% ethanol. A hole was made in the
femoral intramedullary canal at the intracondylar notch
using a 25-gauge needle, and a 0.015-in.-diameter stain-
less steel pin was inserted into the intramedullary canal
to stabilize the left femur prior to fracture. A closed
mid-diaphyseal femoral fracture was produced by a 3-
point bending fracture device [13, 14]. The limbs were
radiographed (Faxitron, Wheeling, IL) immediately after
fracture to ensure proper pin placement and subse-
quently to verify fracture. Mice were euthanized on days
12 post-fracture by CO, asphyxiation followed by cer-
vical dislocation.

Sectioning and staining

Femurs were harvested 12 days post-fracture, cleaned of
soft tissue, and fixed in 10% formalin. Femurs were sub-
sequently decalcified in EDTA, dehydrated through suc-
cessive grades of ethanol and xylene, and paraffin
embedded. Sequential sections (7 um) were cut in the
frontal plane and stained for TRAP-positive cells using
the K-ASSAY TRAP Staining Kit (Kamiya Biomedical,
Seattle, WA). After staining, sections were dehydrated
through ascending grades of ethanol, submerged in xy-
lene for 30 s, and then rapidly dried with forced air.

Laser capture microdissection and RNA isolation

Laser capture microdissection was performed with a Pix-
Cell II laser capture system (Life Technologies, Carlsbad,
CA) under conditions described previously [15]. A laser
spot size of 7.5pum diameter was used, with 100 mW
power and 3.4 ms pulse duration. Approximately 50 in-
dividual cells (chondroclasts or osteoclasts) were cap-
tured per cap, and each capture was performed in
triplicate using sections from three different mice. Oste-
oclasts and chondroclasts were visualized by TRAP
staining and further distinguished from each other by
counterstaining with Alcian Blue, a specific stain for car-
tilage. The TRAP-positive cells adjacent to the mineral-
izing cartilage were chondroclasts while those adjacent
to the mineralizing bone are osteoclasts. Individual
TRAP-positive cells from the external callus were ob-
served and identified under x 100 magnification and
captured on the Arcturus CapSure™ Macro LCM Caps
(Life Technologies, Carlsbad, CA). Individual caps were
examined, and debris or excess material was removed by
gently touching the cap to the adhesive strip on a Post-
It™. The caps were inserted into Eppendorf tubes, where
the cells were lysed by overnight digestion with
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Proteinase K at 37°C. Total RNA was isolated from
chondroclasts or osteoclasts with the Arcturus Paradise™
Extraction and Isolation Kit (Life Technologies,
Carlsbad, CA) following the manufacturer’s instructions.
RNA concentration was measured with a NanoDrop™
spectrophotometer.

Microarray analyses

RNA was sent to GenUs BioSystems (Northbrook, IL)
for microarray analysis. The concentration and quality of
total RNA were assessed using an Agilent Bioanalyzer
with the Agilent RNA6000 Pico Lab Chip (Supplemental
Figure 1). Labeled cRNA was prepared from approxi-
mately 20 ng of total RNA. Briefly, the Poly(A)+ RNA
population within total RNA was amplified using Messa-
geAMP 1I reagents (Life Technologies, Carlsbad, CA).
After a second round of reverse transcription, second-
strand ¢DNA synthesis, and purification of double-
stranded cDNA, in vitro transcription was performed
using T7 RNA polymerase in the presence of Biotin-11-
UTP. The quantity and quality of the cRNA were
assayed by spectrophotometry and on the Agilent Bioa-
nalyzer. Two micrograms of purified cRNA was frag-
mented to uniform size and applied to Mouse GE 4X44k
v2 Microarrays (Agilent Technologies, Design ID
026655) in hybridization buffer. Arrays were hybridized
at 65°C for 17 h in a rotating incubator and washed at
37°C for 1min. After staining with Streptavidin-
Alexa555, rinsed and dried arrays were scanned with an
Agilent G2565 Microarray Scanner (Agilent Technolo-
gies, Santa Clara, CA) at 5pum resolution. Agilent Fea-
ture Extraction software was used to process the
scanned images from arrays (gridding and feature inten-
sity extraction), and the data generated for each probe
on the array was analyzed with GeneSpring GX software
(Agilent Technologies, Santa Clara, CA). To compare in-
dividual expression values across arrays, raw intensity
data from each gene was normalized to the 75th per-
centile intensity of each array. Only genes with values
greater than background intensity in all three replicates
of at least one condition were used for further analysis.

Differential gene expression analysis

Raw hybridization data were normalized using quantile
normalization using the software package Bioconductor
by Affymetrix (Affymetrix Inc; Santa Clara, CA). The
data were then analyzed using the GeneSpring GX7.3
(Agilent Technologies) and BeadStudio software (Illu-
mina) packages for statistical analysis. A multiple testing
correction test was applied to the analysis to reduce the
unwanted variation inherent to the samples, and
differentially expressed genes were identified using a
two-sample ¢ test using false discovery rate (FDR) for
multiple test correction. Log fold change (logFC) >2,
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and FDR P <0.05 was set for statistically significant
DEGs (differentially expressed genes). The heatmap for
expression profiling of differentially expressed genes was
generated by R package of pheatmap. Additionally, un-
supervised hierarchical clustering analysis was done
using Euclidean clustering distance and average cluster-
ing method. Further, to identify the genetic overlap be-
tween chondroclasts and osteoclasts, we performed
principal component analysis (PCA) based on the ex-
pression profiles of differentially expressed genes using
the ClustVis [16].

Quantitative PCR analysis

The linear amplified RNA (aRNA) generated for micro-
array analysis was used as template for cDNA synthesis
for use in gene-specific quantitative PCR (qPCR) ana-
lysis. A total of 4 pug of each aRNA was reverse tran-
scribed in reactions consisting of random hexamers,
MMLV reverse transcriptase and buffer (Promega Cor-
poration, Madison, WI), and dNTPs. The aRNA and
random hexamers were initially heated to 70°C for de-
naturation and cooled to 4°C to allow for primer an-
nealing before adding enzyme. Reactions were run using
a BioRad MyCycler thermocycler and the program
(37°C/2 min, 42°C/1 min, 50°C/1s) for 40 cycles, then
85°C/5min, and 4°C hold. A single qPCR master mix
was prepared for each sample consisting of the 4-pg
equivalent cDNA obtained from RT reactions and Ap-
plied Biosystems Universal PCR Master Mix (Life Tech-
nologies, Grand Island, NY). Ten-microliter qPCR
reactions consisting of approximately 20ng of cDNA
equivalent were run using an Applied Biosystems 7500
Real-Time PCR System and Applied Biosystems Custom
Taqman 96-well gPCR arrays (Life Technologies, Grand
Island, NY), containing assays for genes selected from
the microarray data as well as endogenous controls and
lineage-specific markers, and using the program (50 °C/
2 min, 95°C/10 min) followed by (95°C/15s, 60°C/1
min) for 40 cycles. Data obtained was normalized for
examining relative expression levels via quantitative
AACt analysis [17] with the mean Ct values of the
collective endogenous controls used for internal
normalization.

Gene Ontology and pathway enrichment analyses

The differentially expressed genes between chondro-
clasts and osetoclasts were analyzed for functional en-
richment of GO (Gene Ontology) terms and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
using STRING (Search Tool for the Retrieval of Interact-
ing Genes), a network cluster tool [18]. Functional en-
richment was performed in two categories of GO terms:
biological process (BP) and molecular function (MF). All
genes in the genome were used as the enrichment
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background. GO terms with a P value of <0.05, a mini-
mum count of 3, and a gene term ratio of > 3% (the term
ratio is calculated as ratio of the number of hit genes
within a particular category to the total number of genes
reported in same category) were collected. The signifi-
cance of enriched pathways and P values was calculated
based on the cumulative hypergeometric ¢ test, and false
discovery rate (FDR) was used for multiple correction
testing. The significantly enriched GO terms for MF and
BP in chondroclasts and osteoclasts were represented by
“advanced bubble chart” demonstrating the number and
significance of differentially expressed genes enriched in
the pathway. KEGG pathways enriched in chondroclasts
were shown as “Circos plot,” which represents the se-
lected significantly enriched pathways and associated
with genes in chondroclasts.

Integrated protein network analysis

We also analyzed the functional interactions among pro-
teins to reveal the biological significance of enriched
pathways and associated genes using integrated network
analysis by STRING (version 11.0) [18]. The differen-
tially expressed genes between osteoclasts and chondro-
clasts were used as input gene set, and protein-protein
interactions (PPIs) were analyzed for experimentally vali-
dated interactions with a combined score of > 0.7 indi-
cating high confidence score for significant interaction.
The interaction network was visualized by Cytoscape
(version 3.7.1) [19, 20], and CytoNCA plugin (version
2.1.6) was used to analyze the topological properties of
nodes in the PPI network [21]. To identify the most sig-
nificant nodes, the connectivity degree of networks was
assessed and significance was calculated using score
ranking of each node. The proteins with a degree cen-
trality of > 5.0 were identified as hub proteins.

Network cluster analysis

We performed network cluster analysis to identify the
clustering modules in the PPI network of genes enriched
in chondroclasts as compared to osteoclasts, using the
Molecular Complex Detection Algorithm (MCODE) plu-
gin (version 1.5.1) in Cytoscape [22]. The following cri-
teria were used to identify the significant modules:
“Degree cutoff=2,” “node score cutoff=0.2,” “Haircut=
true,” “Fluff=false,” “k-core=2,” and “max depth=100."
The threshold score of 9 was chosen; therefore, the first
three clusters (cluster 1, cluster 2, and cluster 3) with a
clustering score of 21.01, 14, and 9 were selected and vi-
sualized with Cytoscape (version 3.7.1). The clustering
modules having high node scores and connectivity de-
grees were considered as biologically significant clusters.
The genes in the network cluster 1 were subjected to
transcription factor (TF)-target gene regulatory network
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analysis to identify the potential genes signature specific
to chondroclasts.

Prediction of regulatory networks of transcription factors

We identified the candidate transcription factors to
predict the coordinated regulation of genes involved in
network cluster 1. We examined transcription factor
binding motifs, enriched in the genomic regions of a
query gene set using the iRegulon plugin (version 1.3) in
Cytoscape [23]. The criteria set for motif enrichment
analysis were as follows: identity between orthologous
genes > 0.0, FDR on motif similarity < 0.001, and TF mo-
tifs with normalized enrichment score (NES)>3. The
ranking option for motif collection was set to 10 K (9713
PWMs), and a putative regulatory region of 20kb cen-
tered around TSS (7 species) was selected for the ana-
lysis. Thereafter, TE-target pairs were obtained based on
the TRANSFAC and JASPAR databases included in iRe-
gulon plugin. Our analysis yielded 205 significantly
enriched motifs (normalized enrichment score NES > 3)
that clustered into 44 groups by similarity. More than
100 transcription factors were predicted to potentially
bind the motifs enriched in network cluster 1 of chon-
droclast signature genes as compared to osteoclasts.

Results

Laser capture of the TRAP-positive cells, microarray
analysis of osteoclasts and chondroclasts

In order to identify chondroclasts and osteoclasts in the
same tissue structure, we performed fracture
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experiments using 12-week-old male mice. During frac-
ture healing, series of molecular events take place in se-
quential manner; however, there exists a significant
temporal overlap in these cascades, which represent a
continuum of changing cell populations and signaling
events within the regenerating tissue. In murine femoral
fracture, chondroclast activity was noted in fracture
callus between days 9 and 15, whereas osteoclast was
abundantly seen between days 11 and 20 post-fracture.
Therefore, to isolate osteoclast and chondroclast in simi-
lar temporal and frontal plane from histological section
of fracture callus, we chose day 12 post-fracture. Osteo-
clasts and chondroclasts on histological sections of frac-
ture calluses were visualized by TRAP staining and
distinguished from each other by counterstaining with
Alcian Blue, a specific stain for cartilage (Fig. 1a). The
TRAP-positive cells adjacent to the mineralizing cartil-
age were chondroclasts while those adjacent to the min-
eralizing bone are osteoclasts (Fig. 1b). There were a
number of TRAP-positive cells that were not associated
with either cartilage or bone; we did not capture these
cells as it was unclear whether these would be chondro-
clasts or osteoclasts. RNAs were extracted from the
laser-captured material isolated from fracture calluses of
three independent animals and were subjected to micro-
array analyses. Quality and quantity of total RNA were
assessed using an Agilent Bioanalyzer (Supplementary
Figure 1). The average size of the RNA fragments was
between 100 and 150 bp, though the majority was within
the 150 bp.

attached to the LCM membrane

Fig. 1 Localization of TRAP-positive chondroclasts and osteoclasts and LCM capture. @ A mouse femur 12 days post-fracture stained with tartrate-
resistant acid phosphatase (TRAP) (red) and counterstained with Alcian Blue, a specific stain for cartilage, shows TRAP-positive cells present in
both the mineralizing cartilage (yellow arrow) and the mineralizing bone (white arrow) of the fracture callus. The TRAP-positive cells adjacent to
the mineralizing cartilage are chondroclasts while those adjacent to the mineralizing bone are osteoclasts. b Seven-micrometer-thick sections cut
in the frontal plane from demineralized femurs harvested 12 days post-fracture were stained for TRAP-positive cells and serially dehydrated in
ascending grades of ethanol and finally xylene prior to laser capture microdissection. (i) TRAP-positive cells adjacent to mineralized cartilage
(chondroclasts—red circles) are shown before LCM and after LCM, and the captured cells are shown attached to the LCM membrane. (i) TRAP-
positive cells adjacent to mineralized bone (osteoclasts—yellow circles) are shown before and after LCM, and the captured cells are shown
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Chondroclasts and osteoclasts are transcriptionally
distinct

Expression microarray was performed on a murine
whole genome Agilent platform to investigate the global
changes in gene expression of laser-captured osteoclasts
and chondroclasts derived from fracture callus of
C57BL6 mice. Normalized expression ratios and P values
were calculated for all datasets using GeneSpring GX7.3.
A total of 39,433 microarray probes that encompass 33,
245 genes were used for analysis. After elimination of re-
dundant probes, a total 2999 microarray probes showed
significant expression (P < 0.05); however, 2413 probes
(representing 1995 annotated genes) met the combined
threshold criteria for differential expression (FC > 1.5 or
<0.667, and P <0.05). There was a robust expression of
TRAP gene (ACP5) in both cell populations. The estab-
lished gene markers of osteoclasts (ATP6V0D2, CTSK,
MMP9, SPP1, and CALCR) were strongly expressed in
osteoclasts. We employed principal component analysis
(PCA) to examine variation in transcript abundance
among the genes contained in each array dataset. The
reduction of this highly multidimensional dataset into
two dimensions, or principle components, enables the
unbiased comparison and visualization of total transcrip-
tional activity between samples. The results suggest that
the transcriptome profiles of osteoclasts and chondro-
clasts completely differed from each other (Fig. 2a). Fur-
thermore, the variation captured in the first two
principal components (PCl1 and PC2) demonstrates
broad differences between osteoclasts and chondroclasts,
which accounted for total 73% of the variance in the
dataset, suggesting a high degree of heterogeneity in glo-
bal transcriptional activity among these samples (Fig. 2b).
We next performed hierarchical clustering analysis based
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on global transcriptome profiling to assess the relation-
ship, and consistent with PCA, our resulting dendro-
gram clearly distinguishes the osteoclasts from
chondroclasts (Fig. 2c). These data suggest that chon-
droclasts and osteoclasts are transcriptionally distinct
and thus provide a high level of confidence in further
analyzing the gene expression patterns between these
two populations. The cluster of chondroclasts as shown
in Fig. 2a appears relatively wider; however, it is com-
pletely distinct from osteoclast cluster indicating the
unique transcriptomic profile. The wider cluster pattern
of chondroclasts and osteoclasts could be attributed to
relatively lower number of experimental animals (n = 3),
variation in metabolic and energetic state of chondro-
clast/osteoclast from different animals and the degree of
inflammatory insult caused during femoral fracture, and
also the extent of repair process at the time of harvest of
chondroclast and osteoclast.

Differential gene analyses reveal discrete transcriptomic
signature of chondroclasts and osteoclasts

Genome-wide expression profiles were compared be-
tween chondroclasts and osteoclasts to identify the dif-
ferentially expressed genes between these cell types. Out
of the whole mouse genome, 9576 genes were detected
above background in both cell types. A total of 851
microarray probes representing 732 annotated genes
(FDR P<0.05, FC>2.0) were significantly different be-
tween the chondroclasts and osteoclasts (Fig. 3a). The
Pearson correlation was also used to test similarities in
the patterns of gene expression, and data as shown by
scatter plot and volcano plot revealed that out of 732
differentially expressed genes, 375 were upregulated in
chondroclasts and 357 genes were upregulated in
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Fig. 2 Chondroclasts and osteoclasts are transcriptionally distinct. Microarray analysis of RNA isolated from laser-captured chondroclasts and
osteoclasts. Gene expression profiling for differentially expressed genes was compared in a multivariate analysis via ClustVis using hierarchical
clustering and principal component analysis. The expression analysis led to the successful segregation of these cell populations by chondroclasts
vs osteoclasts via principal component analysis (a, b) and hierarchical clustering analysis (c). b The PCA plot shows PC1 and PC2 indicating 58.1%
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Fig. 3 Differential gene analyses reveal discrete transcriptomic signature of chondroclasts and osteoclasts. The raw hybridization data were
normalized using quantile normalization to the 75th percentile, and genes with differential expression levels greater than 2-fold (FDR P value <
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osteoclasts (Fig. 3a, b). A heatmap analysis revealed dif-
ferential expression of these genes, which discriminate
well between chondroclasts and osteoclasts (Fig. 3c).
The expression levels of P2rx5, Nxn, Gsptl, Serpl,
Scrnl, and Racl were significantly higher in chondro-
clasts, whereas expression of Psmb9, Dotll, Wasf2, and
Aldh3al were significantly higher in osteoclast samples
(Fig. 3c). We next performed quantitative real-time PCR
to validate a subset of genes that were differentially
expressed in osteoclasts and chondroclasts. To this end,
we designed custom-made ABI low-density qPCR arrays
to validate the changes in gene expression. We selected
genes that exhibited more than 2-fold differential ex-
pression between chondroclasts and osteoclasts. Our

qPCR analysis as shown in Fig. 3d demonstrated the pat-
terns of several genes including Racl (a GTPase related
to Ras superfamily) and Serpl (a serine peptidase inhibi-
tor) which were upregulated in chondroclasts over oste-
oclasts as well as Eifl (a translation initiation factor),
GNAS (a guanine nucleotide binding protein), and Ubr5
(an E3 ubiquitin ligase component) which were down-
regulated in chondroclasts relative to osteoclasts
(Fig. 3d). We also validated the microarray results by
examining the expressions of a subset of proteins such
as Lmp2, Psatl, Ufsp2, Nxn, and Wnt5a using immuno-
fluorescent staining in histological section of chondro-
clasts and osteoclasts (Supplementary Figure 2). TRAP
staining was also performed to confirm the specificity of
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immunostaining in these cells, and nuclear staining was
performed to visualize the nucleus. Altogether, these
data suggest chondroclasts and osteoclasts exhibit
unique transcriptomic signature, which are completely
distinct from each other.

Functional annotation clustering identifies subsets of
metabolic genes specific to chondroclasts

We next performed functional annotation clustering
using GO and KEGG pathway analysis to reveal the bio-
logical processes and pathways associated with genes up-
regulated in chondroclasts. The GO enrichment analysis
showed that the genes expressed in chondroclasts were
involved in 12 GO terms for molecular function (MF)
and 119 terms for biological process (BP). Our GO ana-
lysis for both molecular function and biological process
showed that chondroclast-specific genes were enriched
in metabolic process, transport activity, and cellular res-
piration including oxidoreductase and electron transport
chain activity (Fig. 4a, b). These results suggest that cell
signaling involved in cellular metabolic pathways, not-
ably the catabolic pathways of energy metabolism and
oxidative phosphorylation, was enriched in chondro-
clasts. We also examined the genes based on KEGG
pathway enrichment analysis, and our data showed that
“oxidative phosphorylation” is the most enriched path-
way (Fig 4c), which supports the results of the GO ana-
lysis. The Circos plot analysis for the KEGG pathway
showed that a large proportion (~10-18%) of
chondroclast-specific genes were involved in energy
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thermogenesis, oxidative phosphorylation, and the meta-
bolic pathways, suggesting that signaling genes involved
in these pathways such as PSMD2, ATP5B, MT-CO1,
NDUFA7, GNG11, ATP5E, PSMB4, RPL31, GLUDI,
and PGAM1 may constitute the signature genes of
chondroclasts.

Network analysis reveals the abundance of structured
networks of metabolic pathways, ATP synthesis, and
proteasome pathways in chondroclasts
We performed network analyses to identify functional
relationships between subsets of genes that were signifi-
cantly upregulated in chondroclasts. We found that the
differentially expressed genes identified in our array data
were integrated into functional networks by physical in-
teractions or common signaling pathways involved in
several essential energy metabolic processes, including
ATP synthesis and electron transport chain. Network
analysis of the integrated gene interaction network re-
vealed 0.485 clustering coefficient, 11 connected compo-
nent, network diameter of 13, network radius of 1, 0.247
network centralization, 21,792 (74%) shortest paths, 8.33
average neighbors, characteristic path length of 4.13,
0.049 network density, and 1.056 network heterogeneity
(Supplementary Figure 3). The topological properties of
our resulting interaction network showed significant re-
sults involving topological coefficients, betweenness cen-
trality, clustering coefficient, and closeness centrality
(Supplementary Figure 3).

We next performed subnetwork analysis of the inter-

metabolic pathways such as ribosome biogenesis, action network to identify significant clusters enriched
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in chondroclasts. Our MCODE cluster analysis resulted
in 10 clusters that included 76 nodes and 405 edges
(Fig. 5a). Our analysis revealed a total of 3 clusters with
a score of >9. Cluster 1 exhibited the highest score, and
22 genes, such as RPL12, RPS20, RPS6, SSR1, RPS21,
EIF2S2, RPS29, TPT1, EEF1A1, GSPT1, and UBA52,
were included (Fig. 5b). Enrichment analysis demon-
strated that the GO-BP terms enriched by these genes
were associated with metabolic pathways, protein
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targeting, and translation (Fig. 5b). Genes in cluster 2
primarily included NDUFA7, MT-ND1, UQCRQ, MT-
CYB, and MT-ND3, which were enriched in GO-BP
terms associated with mitochondrial ATP synthesis and
electron transport chain (Fig. 5¢). Genes in cluster 3 in-
cluded RNF126, SKP1, UBE2R2, KLHL9, KLHLI13,
FBXO22, UBB, CDC26, and ANAPC13, which were
enriched in the proteasome pathways and ubiquitin-
dependent catabolic pathways (Fig. 5d). Taken together,
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our interaction analysis revealed the abundance of
structured networks of metabolic pathways, ATP syn-
thesis, and proteasome pathways, indicating that
metabolic signaling network in energy metabolism
may be considered as chondroclast-specific signature
gene network.

Transcription factor-target gene regulatory network
analysis predicts ETV6, SIRT1, and ATF1 as chondroclast
signature transcription factors

We next determined the coordinated regulation of these
metabolic signaling gene networks. To identify candidate
transcription factors that regulate these genes, we per-
formed transcription factor (TF)-gene target regulatory
network analysis using iRegulon [23] to predict tran-
scription factors that bind to the promoter of our gene
query set. For this analysis, we chose to use cluster 1 be-
cause it was the most significant cluster from the above
interaction network (Fig. 5a, b). Our analysis yielded 205
significantly enriched motifs (normalized enrichment
score [NES] > 3) that clustered into 44 motif groups by
similarity and 24 associated tracks. In total, > 100 tran-
scription factors were predicted to potentially bind to
the motifs present in genes involved in network cluster
1. To identify the best candidates from these transcrip-
tion factors, several exclusion filters were applied includ-
ing highest-ranking associated motif (>7) and presence
of number of targets (>10), as well as maintenance of
multiple motifs (>4). These filters ended up having 6
motif IDs across 4 motif clusters (Fig. 6a). Motif cluster
1 included 19 transcription factors, whereas motif cluster
2 and 6 had only 5 and 1 transcription factor, respect-
ively (Fig. 6a). Our analysis identified several novel can-
didate transcription factors, such as ETV6, SIRT1, ELK1,
ATF1, SRF XBP1, and CREBS3, that are involved in the
transcriptional regulation of chondroclast-specific genes
(present in cluster 1) (Fig. 6b—d). Moreover, the “regula-
tor-target genes analysis” demonstrated that ETV6,
SIRT1, and ATF1 potentially target a vast majority of
the chondroclast signature genes as identified in cluster
1 (Fig. 6b—d). ETV6 (ETS Variant Transcription Factor
6) is required for hematopoiesis and maintenance of the
developing vascular network, whereas SIRT1 (Sirtuinl)
is a deacetylase which has been shown as a positive
regulator of bone mass [24] and ATF1 is a cyclic AMP-
dependent transcription factor which influences cellular
physiologic processes by regulating the expression genes,
which are involved in growth and survival. The predicted
network identified specific interactions between regula-
tors and target genes, including such targets of ETV6 as
RPL13A, RPL31, RPS6, EIF2S2, and GSPT1 (Fig. 6b).
Together, our results predict ETV6, SIRT1, and ATF1 as
signature transcription factors for the chondroclasts.
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Discussion

The present study provides a comprehensive compara-
tive transcriptomic profiling of osteoclasts and chondro-
clasts and has outlined detailed genetic landscape largely
pointing towards functional clustering and interaction
network. Our goal was to provide a broad compendium
of gene expression differences between cartilage and
bone resorbing cells based on their substrate locations,
with a focus on genes involved in biological pathways
and regulatory networks. Our data provide a significant
and useful resource for the skeletal biologists. Our ana-
lyses identify significantly expanded cohorts of metabolic
genes uniquely expressed by chondroclasts. These genes
extend our understanding of chondroclasts as regulators
of not only energy metabolism, but also ubiquitin-
dependent catabolic pathways. Our analysis also points
to an emerging understanding that chondroclasts ex-
press a variety of mitochondrial and ribosomal genes
which enable them to adapt a metabolically active form.
Our study suggests that chondroclasts function as a re-
sponder of cellular bioenergetics; however, further inves-
tigation of the role of identified metabolic genes on
proliferation, differentiation, and function remains to be
characterized. In addition to molecular characterization,
the ultrastructural and morphological characterizations
are also needed to define the structural aspect of chon-
droclasts. The detailed characterization of multinucle-
ated chondroclast requires establishment of an in vitro
culture condition and further investigation of presence
of intracellular vacuoles, phagocytosed collagen fibers
and lysosomal bodies, cytoplasmic extensions into cartil-
age, and presence or absence of specialized ruffled
border structures similar to osteoclasts. However, for
this process to be reproduced in vitro, it will require as
yet undefined microenvironments. These might include
different adjacent substrate or underlying microenviron-
ment such as thin slices of mineralized and unminera-
lized articular cartilage or subchondral bony lesions in
the culture condition. Further, series of assays need to
be experimentally standardized to confirm the chondro-
clastic activity such as MMP13 activity in multinucleated
chondroclast, expression of immunophenotypic markers
characteristic of macrophages (CD68+, CDI14+, and
CD51-) and osteoclasts (CD68+, CD14—, and CD51+),
presence of intracellular vacuoles, demonstrable acid
phosphatase (TRAP+) activity, and glycosaminoglycan
(GAQ) release assay in the conditioned medium from re-
sorbed cartilage.

Remodeling of mineralized cartilage is essential for the
initiation of bone formation for endochondral
ossification that occurs during skeletal development,
homeostasis, and repair. Cells have been identified with
the unique function of remodeling mineralized matrix.
The term chondroclasts is increasingly assigned to
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Fig. 6 Transcription factor-target gene regulatory network analysis predicts ETV6, SIRT1, and ATF1 as chondroclast signature transcription factors.
Transcription factor (TF)-gene target regulatory network analysis was performed in network cluster 1 using iRegulon plugin in Cytoscape (version
3.7.1). a The iRegulon analysis showed the top transcription binding motifs and their associated transcription factors enriched in the cis-regulatory
regions of the twenty-two genes of network cluster 1. b-d Regulatory network analysis representing the predicted transcription factors (as
octagonal nodes) of the target genes present in network cluster 1 (as oval nodes) showed ETV6 (b), SIRT1 (c), and ATF2 (d) as signature
transcription factors of chondroclasts. The networks were visualized by Cytoscape (version 3.7.1), and transcription factors are significantly
enriched at an adjusted P value < 0.05

multinucleated, TRAP-positive cells capable of resorbing
mineralized cartilage matrix [3]. In general, our know-
ledge of differences between osteoclasts and chondro-
clasts is limited to ultrastructural phenotyping [5-7].
While the genes that are necessary for osteoclastogenesis
and osteoclast function have been widely characterized
[25], to date, no information is available about the gen-
omic similarities and differences between osteoclasts and
chondroclasts. Our study provides first evidence of gen-
omic differences between osteoclasts and chondroclasts

based on their specific interaction with two distinct
matrices.

We used a well-established murine femoral fracture
model [26-28] to isolate TRAP-positive cells that inter-
act with cartilage matrix and TRAP-positive cells that
interact with bone matrix on the same plane. This was
evident at 12 days post-fracture when the soft callus has
not yet fully transitioned into bony callus in fractured
C57/BL6 mice [27-29]. The fact that both cell types
were available on the same plane within distinct
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geographical locations discarded any possibility for
stage-dependent gene expression at least from the devel-
opmental perspective. Thus, the fracture callus model
was highly useful as opposed to the known developmen-
tal models of the growth plate and trabecular bone pre-
viously used to characterize the phenotypes of
osteoclasts and chondroclasts [3, 30, 31]. Laser capture
microdissection (LCM) enabled harvesting of homoge-
neous populations of TRAP-positive cells. This method
has been widely used to isolate single cells from histo-
logical sections [15, 32, 33]. To date, no other isolation
method has proven successful to distinguish between os-
teoclasts and chondroclasts. The fact that little informa-
tion is available about the gene expression signature of
chondroclasts also precluded the use of FACS analyses
for this purpose. In vitro differentiation of bone marrow
derived macrophage into chondroclasts using mineral-
ized cartilage or subchondral bony lesions as underlying
substrate or microenvironment may offer an alternative
cellular model to study the chondroclast; however, it re-
quires extensive optimization of culture condition. As
inflammatory multipotential myeloid cells differentiate
into osteoclasts, we speculate that a similar precursor in
subchondral pathological lesions has the ability to differ-
entiate into chondroclasts and resorbs the cartilage.

Our genome-wide array analyses revealed large set of
genes differentially expressed between chondroclasts and
osteoclasts. Although total expressed genes in these two
cell populations were similar, the substantially higher
numbers of genes in chondroclasts relative to osteoclasts
(375 vs 357) suggest that the chondroclasts may have
more elaborated functionalities. However, the molecular
mechanism and signaling pathways that drive their dis-
tinct functionalities are unclear. Therefore, the Gene
Ontology and KEGG analysis were applied to perform
the pairwise comparisons of the osteoclasts and chon-
droclasts. Notably, the functional pathways that were
significantly overrepresented in chondroclasts included
metabolic process, transport activity, cellular respiratory
enzymes such as oxidoreductase, and others involved in
electron transport chain and oxidative phosphorylation.
It was likely that chondroclasts in a mineralized cartil-
aginous callus, which have not yet become bony in its
majority, would exhibit higher expression of genes re-
lated to metabolism. For the metabolic pathway PSMD?2,
ATP5B, MT-CO1, and GLUD1 genes were significantly
upregulated in chondroclast suggesting that these meta-
bolic genes are likely attributes of chondroclasts in min-
eralized cartilage matrix which allow them to maintain
adequate bioenergetic and catabolic activity during car-
tilage resorption. These data also point to enhanced
metabolic components in chondroclasts compared to os-
teoclasts and also suggest that nearby substrate influ-
ences distinct bioenergetic and metabolic environments
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in their resorbing cells. Since these chondroclasts are de-
rived from fracture model which is a highly active and
vibrant model system and involved series of anabolic
and catabolic cascade processes, the enrichment of
metabolic pathways as chondroclast signature genes
could be attributed to the active and dynamic nature of
our elected cellular model system for chondroclasts. The
disruption to the normal bone microenvironments
caused during fracture leads to the active interactions of
cell populations from the medullary space, periosteum,
and enveloping muscular tissues. Therefore, signaling
and cellular contributions from these different tissues
and their microenvironments may affect the genomic
and epigenomic profile of studied chondroclasts and os-
teoclasts and may contribute to the enrichment of meta-
bolically active genes. Whether this is general findings to
chondroclast or influenced by energetic and vibrant na-
ture of our chosen model system is further area of inves-
tigation and warrants future systematic transcriptomic
studies in the culture condition of chondroclast in active
and dormant stage.

Finally, the comprehensive view of the chondroclast
transcriptome established energy metabolism as a main
functional network of chondroclasts. Further, regulatory
network analysis suggests that genes enriched in ATP
synthesis and proteasome pathways and metabolic path-
ways are regulated by three main factors—ETV6, SIRT1,
and ATF1. Although these data indicate that chondro-
clasts are endowed with enriched metabolic and oxida-
tive phosphorylation genes, their precise role in cartilage
resorption by chondroclasts remains to be established.
While transcriptome is a key determinant of the pheno-
type of a cell, there exists a possibility that overrepresen-
tation of a subset of gene within a cell type regulates the
dynamic function of cells. However, use of gene expres-
sion as a cell marker and physiological dynamics of cell
(chondroclasts) requires further characterization at sin-
gle cell level using single-cell RNA sequencing studies at
high depth of coverage. The broad category of core
genes enriched as chondroclast signature genes may fur-
ther reflect the highly dynamic, energetic, and active
state of cell type studied. The homogenous in vitro cul-
ture of chondroclasts in dynamic vs static phase may
further help in narrowing down and specifying the signa-
ture genes. Future studies will interrogate the functional-
ity of these genomic changes at the cellular and tissue
levels.

Conclusions

While our comparative analysis identifies profound tran-
scriptomic differences between two resorbing cells which
specifically differ in their surrounding substrates and
geographical location, it does not address the certain
heterogeneity that exists at the single cell level in each
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location. However, given the limited range of detection
of microarray-based approach, many of the differences
we have identified might not have been evident with
RNA sequencing approach. Although hybridization-
based microarray approaches are high throughput and
relatively inexpensive, they posed some limitations in-
cluding high background levels and saturation signals,
limited dynamic range of detection, and complex
normalization methods. Nevertheless, the results pre-
sented here provide a foundation for further work to es-
tablish the cellular heterogeneity and characterize the
molecular denominators of chondroclast function
in vivo. Taken together, the comparative gene expression
profiles provided here would be useful resources for fu-
ture work to uncover novel mechanisms of bioenergetic
and metabolic facet of chondroclast cells.
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