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Abstract

Objective: To determine the feasibility and validity of using wearable activity trackers to test associations between
gout flares with physical activity and sleep.

Methods: Participants with physician-diagnosed gout, hyperuricemia (≥ 6.8 mg/dl), current smartphone use, and ≥
2 self-reported flares in the previous 6 months were enrolled. Physical activity, heart rate, and sleep data were
obtained from wearable activity trackers (Fitbit Charge HR2). Daily compliance was defined by the availability of
sufficiently complete activity data at least 80% of the day. Associations of weekly gout flares with sleep and activity
were measured by comparing flare-related values to average sleep and steps per day. We used mixed linear models
to account for repeated observations.

Results: Forty-four participants enrolled; 33 met the criteria for minimal wear time and flare reporting, with activity
tracker data available for 60.5% of all total study days. Mean ± SD age was 48.8 ± 14.9 years; 85% were men; 15%
were black; 88% were on allopurinol or febuxostat, and 30% reported ≥ 6 flares in the prior 6 months. Activity
trackers captured 204 (38%) person-weeks with flares and 340 (62%) person-weeks without flares. Mean ± SD daily
step count was significantly lower (p < 0.0001) during weeks with gout flares (5900 ± 4071) than during non-flare
periods (6972 ± 5214); sleep however did not differ.

Conclusion: The pattern of wear in this study illustrates reasonable feasibility of using such devices in future
arthritis research. The use of these devices to passively measure changes in physical activity patterns may provide
an estimate of gout flare occurrence and duration.

Trial registration: NCT, NCT02855437. Registered 4 August 2016
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Background
Gout flares are one of the main outcomes of urate lower-
ing therapy in randomized control trials [1, 2]. Flare symp-
toms are variable and can last from hours to days
depending on their severity and the gout management

strategy. Over time, gout flares lead to a significant decline
in function and disability [3, 4]. Gout also is associated
with disturbances in sleep quality and quantity [5]. One of
the challenges in gout studies is the inability to capture
flare occurrence in a timely and accurate fashion since
flares primarily occur external to the health care setting.
With the advent and widespread uptake of digital tech-
nologies and a validated patient-reported gout flare defin-
ition [6], there is an opportunity to innovate around
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improved methods for gout flare capture [7]. However,
systems that require regular proactive patient input (e.g.,
weekly or daily patient gout flare diaries) are not optimal
given the participant burden required and the resulting
likelihood of patient reporting attrition over time. Less ob-
trusive means of remote flare capture that build on com-
mon digital technologies are of high interest. Passive data
capture using such technologies might facilitate feasible
and valid capture of gout flares.
In recent years, wearable activity tracker devices have

been widely used and adopted for personal activity mon-
itoring. Their popularity is associated with ease of use,
ability to wirelessly synchronize with smartphones, and
the ability to record multiple types of data in real time.
Wearable activity trackers have also been incorporated
more frequently into clinical research given their cap-
ability to capture daily activities including step counts
and sleep duration and depth. Wearable activity trackers
have also been used in studies assessing physical activity
in individuals with musculoskeletal diseases such as
osteoarthritis, rheumatoid arthritis, and spondyloarthritis
[8, 9]. As one example, Fitbit® devices (Fitbit Charge
HR2) have widespread popularity, and as of 2016, the
Fitbit device platform holds a significant share of the
wearable tracker market [10]. This proprietary device
has been utilized in many clinical trials [11] and evalu-
ated in many validity studies [12].
Despite the increased use of the wearable activity

trackers in various research studies, the suitability of data
retrieved from such devices for research purposes remains
somewhat unsettled [13]. One challenge with such devices
is defining methods to assess a patient’s wear compliance
or “wear time.” While removing the device creates a miss-
ing data problem, only a few studies reported specific cri-
teria for wear time [14] or data completeness. Other
studies only used the patient self-reported wear times [15]
or through wear time journals [16].
In this study, we evaluated the feasibility of using a wearable

activity tracker, Fitbit®, to capture the impact of gout flares on
physical activity and sleep as part of a 6-month, prospective
pilot study designed to examine preferences and feasibility to
capture patient-reported gout flares. We also examined the
associations of physical activity and sleep changes with flares.
Finally, given uncertainties on the best methods to handle
missing data from the wearable activity tracker, since partici-
pants might remove it for periods of time, and given the lack
of a widely accepted definition of consistent wear of the
tracker devices, we evaluated different definitions for the com-
pleteness of data capture and their impact on our results.

Participants and methods
Study population and design
After approval by the relevant Institutional Review
Boards, the study was conducted in rheumatology clinics

at two academic medical centers, the University of Ala-
bama at Birmingham (UAB) and the University of Neb-
raska Medical Center (UNMC, Omaha, NE), from
September 2016 to March 2018. Eligibility criteria in-
cluded adults, age ≥ 18 years, smartphone ownership,
rheumatologist-diagnosed gout, self-report of ≥ 2 gout
flares in the previous 6months, and hyperuricemia
(serum urate level ≥ 6.8 mg/dl) measured within 3
months of screening. We evaluated sleep and physical
activity using a wearable activity tracker, Fitbit® Charge
HR2 (Fitbit Inc., San Francisco, CA, USA), provided as
part of the study to each participant. We captured gout
flares using scheduled queries sent through a custom
software application (“StudyBuddy”) developed at UAB,
or via an interactive voice response system (IVR) [7].
Each participant was provided the wearable activity
tracker at the initial visit with the StudyBuddy and Fitbit
apps installed and tested on their mobile phones. We re-
quested participants to wear the device consistently for
6 months except when charging it or bathing. For the
StudyBuddy application to capture all physical activity
and sleep data, the wearable activity tracker was synced
automatically via Bluetooth (in the background), or
manually every 4 days. Beyond scheduled 12-week clinic
visits or phone calls, we did not provide reminders
aimed at improving adherence in order to be more prag-
matic in our study design.

Physical activity, sleep, and heart rate measurement using
wearable activity trackers
Raw data on sleep duration, physical activity (step
count), and heart rate were obtained from the wearable
activity tracker in minute-level increments. All Fitbit
data was obtained automatically by the StudyBuddy ap-
plication through direct queries to the developer’s
application-programming interface (API) that occurred
at least once weekly.

Tracker feasibility and wear measurements
Heart rate data alone is sometimes used to classify
whether the tracker device is being worn or not. To as-
certain the impact on wear time classification by adding
in information about step count and sleep, we evaluated
a variety of definitions of wear time compliance. First,
any minute where heart rate, step count, or sleep data
was available classified that minute as wearing the de-
vice. We then evaluated the impact of imputing wear
time in 15-, 30-, and 60-min intervals. For example, for
the 60-min imputation, if any minute in an hour was
deemed as having compliant wear time, the entire 60
min of that hour would be considered to be compliant
wear time. Hours were then aggregated into 24-h inter-
vals, partitioning days at 4 pm (rather than at midnight)
to avoid subdividing the usual period for sleep.
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We then classified different compliance patterns using
a 24-h period as the unit of analysis. A “Compliant wear
with sleep” designation was assigned when the device
was worn at least 80% of the 1440 possible minutes in a
day. For participants choosing not to wear the device at
night, a 24-h period was classified as having “Compliant
wear without sleep” when the device was worn at least
80% of 960 possible minutes (16 h, excluding 8 h during
which the participant was assumed to be sleeping). The
24-h periods where no wearable activity tracker data was
available were classified as “No health tracker data”, and
all other patterns were described as “Partial wear” days.

Gout flare measurements
Participants reported gout flares by completing survey
questions via weekly scheduled StudyBuddy application
questions or programmed IVR calls at a time selected by
each participant. These survey questions were derived
from the validated gout flare instrument [6]. Two defini-
tions were used for gout flares: (1) a single-item defin-
ition, where the participant reported whether or not he
was having a flare (yes/no), and (2) a more stringent vali-
dated definition by Gaffo et al. [6] based on fulfilling at
least 3 of 4 possible criteria (patient-defined gout flare,
pain at rest score of > 3 on a 0–10 point numerical rat-
ing scale, self-reported presence ≥ 1 swollen joint, and
presence ≥ 1 warm joint). The self-report flare instru-
ment captured weekly reports of gout flares as well as
each flare start date. Since we measured wearable activ-
ity tracker data and aggregated from its native minute-
level precision to 24-h periods, the gout flare reported
data was converted from a weekly recall period to 24-h
periods and aligned temporally with the wearable activity
tracker data.

Data management and statistical analysis
The pattern of wear time for each participant over the
course of the 6-month study was illustrated using a heat
map and colored as (1) Compliant wear with sleep days,
(2) Compliant wear without sleep days, (3) Partial wear
days, and (4) No health tracker data days. We measured
the association of flare with mean step count and sleep
duration collected from the wearable tracker device,
comparing flare days to non-flare days using both the
single-item gout flare and the more stringent validated
gout flare definition. We then re-analyzed our results
across different wear compliance groups to assess
whether the completeness of tracker data meaningfully
impacted the associations observed with gout flare.
Baseline characteristics of study participants were

summarized with counts for categorical variables and
means and standard deviation (SD) for continuous vari-
ables. For comparisons of activity tracker wear compli-
ance data, descriptive statistics with proportions were

used. To study changes in sleep and step counts on days
when the participant reported a gout flare, we used a
mixed linear model to account for repeated observations
and to adjust for potential confounders. An alpha of 0.05
was used to determine significance, and all analyses were
performed with SAS (version 9.4, SAS, Cary, NC).

Results
Forty-four participants were enrolled with 33 meeting
the minimum criteria for wear time of the activity
tracker and flare reporting. One participant withdrew
immediately post-randomization, and five were lost to
follow-up. Out of a total of 6572 days with activity
tracker data, the effective sample size including compli-
ant and partial compliant wear patterns included 3978
days of observation among 33 subjects. When we
merged the Fitbit data with StudyBuddy/IVR data, we
generated 3426 days for 33 subjects out of the total 44
participants between the two data sets (75%). Partici-
pants were mostly well-educated, middle-aged men with
average gout disease duration of 10 years. Over one-half
reported ≥ 4 gout flares in the 6 months prior to study
enrollment (Table 1).

Wearable activity tracker device feasibility and wear time
imputation
Analyzing days when the activity tracker was worn
(60.5% of all study days), 68% of days were classified as
Compliant wear with sleep (red), 7% as Compliant wear
without sleep (green), and 25% as Partial wear (blue)
(Fig. 1). If we consider only the first 3 months of data,
censoring participation at 84 days, 66% of all study days
had activity tracker data, with 68% of days considered as
Compliant with sleep data, 6% Compliant without sleep,
and 26% of days as Partial wear.
The impact of adding step count and sleep data to the

heart rate data, as well as imputing wear time in 15-,
30-, and 60-min increments, is shown in Table 2. If only
heart rate data was used with no imputation, a total of 4,
182,919 min would have been classified as the partici-
pant wearing the device. Once step count and sleep data
was incorporated, the number of wear minutes increased
by 2.6% to 4,292,447 study minutes.
Imputing wear time to the nearest 15, 30, or 60 min

increased wear minutes assigned using only heart rate
data by approximately 4, 6, and 8%, respectively, com-
pared to no imputation. A similar effect was seen for the
composite of heart rate, step count, and sleep minutes.
Overall, using the composite of heart rate, step count,
and sleep data, and imputing to the nearest 60 min, 8.5%
more study minutes (4,657,020) were classified as wear-
ing the activity tracker. When stratifying these effects
according to whether the person-day was classified as
Compliant wear vs. Partial wear, the effect of imputation
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was more profound on Partial wear days (mean increase
of 23.0% of wear minutes) but still meaningful for Com-
pliant wear days (mean increase of 6.0% of wear mi-
nutes) (Supplemental Table).

Associations with gout flares
When we analyzed the mean change in step count on
days with Compliant wear data, there was a difference in
step count on days with single-item gout flare compared
to non-flare days (Table 3). Importantly, our definitions
for Compliant wear mattered in terms of the association
with gout flare on that day. A mean difference of − 841
steps was observed on study days with Compliant wear
with sleep data (p < 0.0001), − 675 steps on days includ-
ing Compliant wear with sleep + Compliant wear with-
out sleep (p = 0.0007), and − 472 steps on days with all
available data (i.e., days with any non-missing data, in-
cluding Partial wear data and ignoring wear patterns)
(p = 0.02). In a secondary analysis based on validated

flares, the step count change results were similar
(Table 3). There was an average difference of − 864 steps
on days with Compliant wear with sleep (p = 0.0001) and
− 718 steps on days with Compliant wear with sleep +
Compliant wear without sleep (p = 0.0008). Likewise, there
was a change by − 396 steps noted on flares compared to
non-flare days when we examined all available data, al-
though this was not significantly different (p = 0.05).
In the sensitivity analysis where flare days were re-

stricted to those meeting the validated gout flare defin-
ition, a total of 559 days met the validated gout criteria
definition vs. 666 days in the single-item definition, ac-
counting for approximately 16% gain in flare days using
the latter approach, more sensitive definition. A numeric
difference in step count associated with gout flare was
observed when comparing the single-item gout flare vs.
validated flare definition. On days with compliant wear
with sleep, flare based on the validated definition was
associated with 184.82 fewer steps compared to the
single-item gout flare definition, although this difference
did not achieve statistical significance (p = 0.71). There
were no significant changes in sleep duration during
single-item (8.09 ± 3.35) or validated flare vs. no flare pe-
riods (8.2 ± 3.22) (p = 0.7) (data not shown).

Discussion
Using a commercially available health activity tracker de-
vice that captured data on step count and sleep, we de-
tected a significant difference of 841 steps in the daily
step count on days where a gout flare occurred versus
days where no gout flare was reported. However, we did
not observe a change in sleep duration during flares.
Using the more specific validated gout flare definition,
there was a numerically larger effect on step count.
Eighty-two percent of the participants met criteria for
minimal wear time of the activity trackers, with data
available for 60.5% of total study days. Considering days
for which we had any health activity tracker data, 75% of
those days reached our definition of compliant wear
time, indicating reasonable feasibility of wearable tracker
use in gout clinical studies. We also increased our
analyzable data when we used a composite of heart rate,
sleep, or step count data to identify wear time. Further
data gains were seen with imputation of wear time to
60-min intervals compared to shorter intervals, suggest-
ing that the methods used for defining tracker wear in
such studies may have a modest effect on study results.
Furthermore, a more liberal and sensitive definition of
gout flare, a single-item definition based solely on pa-
tient report, increased the flare days captured by the
trackable devices.
The feasibility of using wearable activity trackers has

been reported in various studies of other rheumatologic
and chronic diseases with heterogeneous results. A

Table 1 Baseline characteristics of study participants (n = 33)

N (%) or mean
(SD)

Age (years) 48.8 (14.9)

Sex

Men 28 (84.9)

Race

White* 27 (81.8)

Black 5 (15.2)

Other* 1 (3.0)

Education level

Less than high school 1 (3.0)

High school or G.E.D. 8 (24.2)

Some college (junior college, technical degree,
etc.)

13 (39.4)

4-year college degree or higher 11 (33.3)

Age of first gout flare (years)† 38.1 (18.6)

Duration of gout (years)† 10.5 (8.2)

Number of flares prior 6 months

1–3 16 (48.5)

4–6 7 (21.2)

> 6 10 (30.3)

Gout medication use

Urate lowering therapy 29 (87.9)

NSAID or colchicine 21 (63.6)

Prednisone 12 (36.4)

Number of smartphone apps on cellphone† 20.6 (17.2)

NSAID non-steroidal anti-inflammatory; urate lowering therapy included
allopurinol, febuxostat, or probenecid; not mutually exclusive to other
gout medications
*Two declared Hispanic ethnicity; †missing data = 1
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Fig. 1 Heat map showing daily compliance with wearing the health tracker device. Compliance analysis for each participant is shown with data
in each column reflecting a participant; each row is a person-day in the study. Red = compliant wear (≥ 80%) with sleep data; green = compliant
wear (> 80%) without sleep data; blue = partial wear; white = not wearing
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recent meta-analysis assessed the adherence and effect-
iveness of wrist wearable trackers to increase physical
activity in rheumatic diseases. That study reported a
mean wear time of more than 90% in 3 studies; however,
all had shorter mean duration of only 10 weeks. A
16-week study looking at physical activity adherence
through self-monitoring intervention with a personalized
goal among postmenopausal females found a median of
≥ 10 h/day adherence to wear in 95% of the intervention
days [17]. In another study of children with juvenile idio-
pathic arthritis [18], a wrist activity tracker used to

capture physical activity data was worn on 72% of the
days in the intervention period. We found a somewhat
lower compliance pattern than in these other studies.
These differences in wear compliance might be second-
ary to the longer 6-month duration of our study when
compared to other studies as well as the differences in
study objectives and diseases being monitored. The fact
that our investigation represented a more real world,
pragmatic experience lacking close monitoring for com-
pliance, is another difference compared to other studies
where regular follow-up with weekly calls from the

Table 2 Effect of aggregating heart rate, step count, and sleep data, and imputation of wear time in 15-, 30-, and 60-min
increments, to classify time wearing the activity tracker device

Imputation* Heart
rate
minutes

% increase
from
imputation of
wear time

Step
count
minutes

% increase
from
imputation of
wear time

Sleep
minutes

% increase
from
imputation of
wear time

Composite of any
(heart rate, step
count, sleep)
minutes

% increase wear time above
heart rate minutes and after
imputation of wear time**

Raw data,
no
imputation

4,182,
919

Referent 828,780 Referent 1,155,
986

Referent 4,292,447 2.6%; referent

15-min
imputation*
intervals

4,354,
035

+ 4.1% 2,342,
250

+ 182.96% 1,204,
320

+ 4.2% 4,472,685 2.7%; 4.2%

30-min
imputation
intervals

4,426,
740

+ 5.8% 2,877,
690

+ 247.2% 1,255,
920

+ 8.6% 4,552,950 2.9%; 6.1%

60-min
imputation
intervals

4,522,
500

+ 8.1% 3,424,
920

+ 313.3% 1,357,
500

+ 17.4% 4,657,020*** 3.0%; 8.5%

Heart rate minutes =minutes with heart rate data; step count minutes =minutes with steps data; sleep minutes =minutes with sleep data
*Imputation to the specific interval was performed if there was any value (heart rate, steps, or sleep) in 1 min was non-missing
**The first number refers to the increase in wear time related to the use of the 3 data types vs. only step count data, shown in the first column of the same row;
the second number refers to the gain in wear time related to imputation compared to the first row

Table 3 Average daily step count differences by level of trackable wear compliance and gout flare classification

Wearable tracker
compliance classification

Gout flare
classification
definition

Participants,
flare days

Participants,
non-flare days

Mean ± SD step
count on flare days

Mean ± SD step count
on non-flare days

Adjusted
difference * (p value)

Compliant wear
with sleep

Single item Subjects = 25
Total days = 442

Subjects = 29
Total days = 1791

5900 ± 4071 6973 ± 5214 Δ = − 841 (p < 0.0001)

Compliant wear with
sleep + Compliant
wear without sleep

Single item Subjects = 29
Total days = 504

Subjects = 30
Total days = 1991

6171 ± 4096 7007 ± 5173 Δ = − 675 (p = 0.0007)

All available Fitbit data,
ignoring wear pattern

Single item Subjects = 31
Total days = 666

Subjects = 30
Total days = 2547

5330 ± 4090 6236 ± 5032 Δ = − 472 (p = 0.0121)

Compliant wear
with sleep

Validated Subjects = 21
Total days = 383

Subjects = 29
Total days = 1791

5930 ± 3983 6973 ± 5214 Δ = − 864 (p < 0.0001)

Compliant wear
with sleep +
Compliant without
sleep

Validated Subjects = 24
Total days = 439

Subjects = 30
Total days = 1991

6173 ± 3984 7007 ± 5173 Δ = − 718 (p = 0.0008)

All available Fitbit data,
ignoring wear pattern

Validated Subjects = 27
Total days = 559

Subjects = 30
Total days = 2547

5482 ± 3977 6236 ± 5032 Δ = − 396 (p = 0.0542)

Compliant wear with sleep = > 80% of 1440 min recorded. Compliant wear without sleep = > 80% of 960 min = recorded; all available data = partial wear (= wear
minutes > 60 < 800 recorded) + compliant wear with sleep + compliant wear without sleep
*To estimate p value, mixed linear models were used to adjust estimation for repeated observations for an individual

Elmagboul et al. Arthritis Research & Therapy          (2020) 22:181 Page 6 of 9



research team and monthly face-to-face meetings [19] or
scheduled study visits [20] likely contributed to the
higher adherence observed in those reports.
Despite the increase of use as well as the many validity

studies with wearable activity trackers [14, 21, 22], defi-
nitions for compliance with wearing the device, and
standards for sufficient completeness of the activity
tracker data to permit valid analysis, are not well de-
scribed. In past studies, cutoff points ranging from 10 to
30min of zero wear counts per day were used to identify
interrupted wear [23, 24]. Variable cutoff points from 1
to 10 h per day to consider that the information was
complete enough to permit analysis have been used pre-
viously, with no particular recommendations [23, 25,
26]. A methodologic study comparing 4 wear time algo-
rithms suggested that the most stringent criteria used
adversely impacted the sample size [27]. In particular,
the most stringent algorithm defined minimal wear time
as 12 h per day and allowed no more than at least 20
consecutive minutes of non-wear, while the most liberal
algorithm allowed up to 60 consecutive minutes of non-
wear. Significant differences were observed in wear time
among different algorithms ranging between 960 and
779 min/day. These findings parallel observations from
our study where the adoption of overly stringent cutoffs
(imputing wear time to ≤ 30min) would have been prob-
lematic resulting in substantial data loss, whereas imput-
ation of wear time to 60-min intervals yielded a
considerable increase in overall wear time data. We also
demonstrated that, as we expected, heart rate data was
most useful to evaluate wear time, but there were gaps
of minutes where data was missing (e.g., due to band be-
ing worn too loosely on the wrist), such that the com-
posite of minute-level step count, heart rate, and sleep
data appears to provide a more comprehensive measure
of wear time than using heart rate alone. Gout flares are
a subjective and sometimes poorly captured outcome
measure in gout research; hence, they are critical yet
problematic as an endpoint in clinical trials. Thus, there
is substantial interest in identifying methods to better
define flares that are not dependent on direct patient re-
port. Since gout flares are associated with patient-
reported reductions in physical activity and disturbed
sleep [4, 5], better ways to capture these potential surro-
gates for gout flares are of high interest, particularly
using passive methods that are not dependent on indi-
viduals filling out questionnaires. In our study, we dem-
onstrated objective evidence of reduced step counts with
gout flares, as has been previously reported in other
rheumatic diseases using wearable health trackers [28].
When comparing changes in physical activity in all wear
patterns between the single-item, self-reported flare and
the more specific validated gout flare definition, there
was a greater magnitude in the reduction in step count

during flare days when the more rigorous gout flare def-
inition was used. This finding could reflect the greater
specificity of the validated flare definition, with the ex-
pectation that those flares were more severe, and less se-
vere flares (as were sometimes captured using the
broader definition) yielded a smaller impact on step
counts. Larger studies are needed to confirm our find-
ings using a range of gout flare definitions. Our finding
that sleep duration was not affected by gout flare might
be secondary to one of the known weaknesses of wear-
able activity trackers in overestimating sleep duration, as
has been reported [29], or simply that a gout flare does
not meaningfully affect sleep. It is also possible that
sleep duration is not the optimal metric to assess in rela-
tion to gout flares, but rather, quality and stages of sleep
(e.g., deep sleep, REM) could be more meaningfully af-
fected by such flares. This topic should be examined in
future studies to analyze stage of sleep and associated
duration of time in each stage, rather than merely sleep
minutes.
This pilot study also highlighted potential challenges.

Although many participants were highly compliant with
the tracker device, there were sometimes lengthy gaps of
non-wear, limiting the sensitivity of the device and sug-
gesting the importance of more real-time monitoring of
participant wear patterns during the course of future
studies aimed at outcome assessment.
Also we were not able to fully address other causes be-

hind reduced physical activity such as pain for any other
reason, the participant’s occupation, and activity variations
during different days of the week. A few study participants
encountered technical issues with device-smartphone
synchronization as well as issues with charging their de-
vices; these concerns should be offset in future studies as
available technology becomes even more commonplace
and easier to use. Based on these observations, we recom-
mend that future studies leveraging this technology coord-
inate near real-time data access to effectively monitor
participation and intervene as gaps in data become appar-
ent. In a larger 250+ person RA study [30], based on ex-
perience from this study, we incorporated some changes
in the study design by introducing more active daily data
monitoring as well as accounting for occupational status,
hobbies, and days of the week that could act as confound-
ing factors.
Since our study was a proof-of-concept study, our

main objective was to examine the association of gout
flares (single-item and validated) with physical activity.
Future larger studies including those with subset ana-
lysis, such as examining response by types of urate low-
ering therapy, will be important.
Additionally, history of health states affecting sleep

such as insomnia was not obtained, which might have
resulted in substantial variability in sleep patterns that
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could not be effectively controlled for in the study, mak-
ing it more difficult to detect the impact of a gout flare.
Self-reported flare data was collected weekly, making the
identification of the gout flare duration potentially chal-
lenging given the reliance on patient recall. An increased
frequency for the collection of flare data might be con-
sidered in future studies to offset these concerns, at
minimum collecting data daily after a flare has been cap-
tured. Lastly, we did not protocolize patient engagement
to maximize wear time, but this design feature was de-
liberate to allow us to better ascertain feasibility of a
largely “hands-off” data collection approach.

Conclusion
Our study provides valuable and novel insight about the
potential of using wearable activity trackers to passively
measure changes in physical activity patterns that might
provide estimates of disease activity and duration of gout
flares. We found that heart rate data alone as measured by
health activity tracking devices was not an ideal measure
to determine whether participants are wearing such a de-
vice. Our method of imputation of wear time to 60-min
intervals captured in 1-min increments for all three data
types (heart rate, step count, and sleep) yielded more ro-
bust results than using heart rate data alone. The possibil-
ity of wearable technology being used as an adjunct to
patient reports versus an independent tool is yet to be fur-
ther validated but remains a goal. If validated further, this
could free patients from having to frequently answer ques-
tions and provide patient-reported outcome (PRO) data,
or at least, reduce data collection burden often encoun-
tered by studies. Future work will be needed to assess the
application of the passive data from wearable activity
trackers to monitor gout flares while examining new inter-
ventions in gout, but these results are a promising first
step to support the feasibility of incorporating these ele-
ments into such a study to better capture flares, especially
using passive data sources alone, or infrequently supple-
mented by active data collection through PRO instru-
ments. The ability of the activity tracker device to not
merely classify but to predict a flare remains an opportun-
ity for the future.
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