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Abstract

Background: Although increasing studies have demonstrated that chondrogenic progenitor cells (CPCs) remain
present in human osteoarthritic cartilage, the biological alterations of the CPCs from the less diseased lateral tibial
condyle and the more diseased medial condyle of same patient remain to be investigated.

Methods: CPCs were isolated from paired grade 1-2 and grade 3-4 osteoarthritic cartilage by virtue of cell migratory
capacities. The cell morphology, immunophenotype, self-renewal, multi-differentiation, and cell migration of these
CPCs were evaluated. Additionally, the distributions of CD105%/CD271% cells in OA osteochondral specimen were
determined. Furthermore, a high-throughput mRNA sequencing was performed.

Results: Migratory CPCs (mCPCs) robustly outgrew from mildly collagenases-digested osteoarthritic cartilages. The
mCPCs from grade 3-4 cartilages (mCPCs, grades 3-4) harbored morphological characteristics, cell proliferation, and
colony formation capacity that were similar to those of the mCPCs from the grade 1-2 OA cartilages (mCPCs, grades
1-2). However, the mCPCs (grades 3-4) highly expressed CD271. In addition, the mCPCs (grades 3-4) showed
enhanced osteo-adipogenic activities and decreased chondrogenic capacity. Furthermore, the mCPCs (grades 3-4)
exhibited stronger cell migration in response to osteoarthritis synovial fluids. More CD105%/CD271% cells resided in
grade 3-4 articular cartilages. Moreover, the results of mRNA sequencing showed that mCPCs (grades 3-4) expressed
higher migratory molecules.

Conclusions: Our data suggest that more mCPCs (grades 3-4) migrate to injured articular cartilages but with
enhanced osteo-adipogenic and decreased chondrogenic capacity, which might explain the pathological changes of
mCPCs during the progression of OA from early to late stages. Thus, these dysfunctional mCPCs might be optional cell
targets for OA therapies.
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Introduction

Knee osteoarthritis (KOA) is one of the most common de-
generative disorders in joints and has been anticipated to
be the fourth leading cause of disability worldwide by the
year 2020 [1, 2]. It is mainly characterized by slowly pro-
gressive degeneration and loss of the articular cartilage.
Unfortunately, incomplete understanding of the pathogen-
esis of KOA confined the development of therapeutic
strategies, and there are few curable treatments available
so far for osteoarthritis (OA) until the end stage of the dis-
ease necessitates joint replacement [3, 4].

In the past decades, articular cartilages have been consid-
ered as hypocellular and hypovascular tissues and possessed
poor capacities to self-repair. Promisingly, recent investiga-
tions have shown the normal and OA articular cartilages
containing tissue-specific stem/progenitor cells, named
chondrogenic progenitor cells (CPCs), with high prolifera-
tive, clonogenic, and multi-differentiation capacities [5, 6].
In addition, CPCs are capable of migrating to injured sites
after cartilage trauma [7] or diseased osteoarthritic carti-
lages [8]. Furthermore, CPCs have recently attracted inter-
est due to their immunoregulatory properties [9, 10] and
phagocytic capacity [11], which have been suggested as
valuable potentials for cell-based therapies [6, 12—14]. How-
ever, numerous studies from independent teams brought
inconclusive information in understanding CPCs activity at
different phase of knee OA progression. Seol et al. reported
that CPCs represented a transient emergence and homing
after cartilage mechanical injuries [7]. In addition, Tong
et al. showed that CPCs harbored a transient proliferative
response in early OA and became gradually quiet as OA
progresses [15]. Nevertheless, the pathological changes of
CPCs during the development of OA and the biological
mechanisms governing these cells remain to be elucidated.

Fortunately, a portion of OA patients with total knee
arthroplasty (TKA) present Outerbridge grade 3—4 cartil-
age lesions in the medial compartment accompanied by
grade 1-2 cartilage lesions in the lateral side [16, 17],
which provide an opportunity to explore the CPC changes
in different grades of osteoarthritic cartilage in a strictly
matched manner so as to avoid individual heterogeneity
[18]. Xia al. investigated the relative cell percentage, prolif-
eration activity, multi-lineage differentiation potential, and
miRNA expression profile of a subpopulation of human
CPCs with CD105 and CD166 co-expression by isolating
cells from the degraded cartilages that are in the medial
condyle and relatively normal cartilage on the lateral side
[19]. In addition, CPCs derived from paired grade 1-2 car-
tilage on the lateral femoral condyle and grade 3—4 cartil-
age on the medial femoral condyle were assayed by a
standardized colony-forming unit assay by using auto-
mated image analysis software [18]. However, all of the
CPCs were obtained from the released cells post collage-
nase digestion either by cell colony formation cell
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expansion or flow cytometry cell sorting [20, 21]. In
addition, most of these cells were obtained from femoral
condyles instead of from the osteoarthritic tibial plateau
cartilages which usually underwent significant patho-
logical changes during OA progression.

Our previous study reported an effective strategy of
isolating functional CPCs from human articular carti-
lages by virtue of cell outgrowth after a short-time colla-
genase digestion [12], which are supposed to accelerate
cell migration with only little proteoglycan loss in the
edge of tissue and minimal cell death [22]. This subpop-
ulation of CPCs exhibited high cell proliferation and car-
tilage regenerative capacity than that of released cells,
which may benefit from mimicking the stem/progenitor
niche in vitro [12, 23]. Therefore, we hypothesized that
culturing the short-time collagenase-digested OA cartil-
age fragments may obtain novel subpopulations of CPCs,
which may be helpful to understand the CPC changes
during progression of KOA. In the current study, we
cultured CPCs from paired grade 1-2 OA on the lateral
tibial plateau and grade 3-4 OA on the medial tibial
plateau cartilage from the same donor by virtue of cell
migrations. The CPC immunophenotype, self-renewal,
multi-differentiation, cell migration, in vivo distribution,
and gene expression in the CPCs were also investigated.

Methods

Patient characteristics

This study was approved by the institutional ethical re-
view board of our Hospital (Rapid review of scientific re-
search projects for use of discarded biological material),
and informed consent was obtained from all donors.
Twenty-eight patients (9 male and 19 female, mean age,
63.6 years [range, 53—73 years]; mean body mass index,
26.0 kg/m® [range, 22.7-30.8 kg/m’]; mean disease dur-
ation 7.3years [range, 3-15years]) (Supplementary
Table 1) who were diagnosed with late-stage idiopathic
KOA according to the criteria of the American College
of Rheumatology [24] with varus malalignment of the
lower extremity and scheduled for elective TKA were re-
cruited. Radiographs exhibited a relatively spared lateral
femoral compartment (joint space >3 mm). Cartilage
morphology was scored according to the whole-organ
magnetic resonance imaging score [25] (mean cartilage
scores 19.4 [range, 12.0-25.0] for medial femorotibial
joint; mean cartilage scores 6.2 [range, 3.0-10.0] for lat-
eral femorotibial joint) (Supplementary Table 1). Patients
were excluded if they had secondary arthritis related to
systemic inflammatory arthritis or if their history in-
cluded previous systemic or intraarticular injection glu-
cocorticoids, prior ipsilateral knee surgery, knee injury,
infection, or osteonecrosis. There are 28 patients includ-
ing in our study. Eighteen patient specimens were used
for histopathology experiments, and 10 other patient
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specimens were used for cell isolation. Among 18 patient
specimens, 6 patient specimens were too hard to com-
pletely decalcify; thus, 12 were used for HE staining, and
among them, 8 randomly selected patient specimens
were used for CD105/CD271 staining.

Isolation, expansion, and identification of mCPCs

During the arthroplasty procedure, an osteochondral speci-
men of the tibial plateau was harvested with the initial
proximal tibial cut. Samples of Outerbridge grade 1-2 car-
tilage were obtained from the lateral tibial plateau, and
samples of grade 3—4 cartilage were obtained from the
medial tibial plateau (=10 donors). Grade 1-2 cartilage
includes cartilages with an intact surface (grade 1) and min-
imal fibrillation (grade 2), and grade 3—4 cartilage includes
cartilage with fissures to subchondral bone [26]. The
methods used to harvest the CPCs have been described in
previous studies [5, 12, 27, 28] with minor modifications. In
brief, the cartilaginous tissues were separated from the
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osteoarthritic articular cartilages without contaminated
subchondral bones and were minced into pieces (about 1.0
mm x 1.0 mm x 1.0 mm, Fig. 1b), and then digested in 0.1%
collagenase II (Sigma) for 2 h. The released cells were aban-
doned, and the digested cartilage chips were incubated in
alpha-minimal essential medium (a-MEM) with 10% vol/
vol fetal bovine serum (FBS) (Invitrogen Life Technologies)
at 37 °C in an atmosphere of 5% CO,. The mCPCs outgrew
from cartilage chips within 10 days, and the adhesive cells
rapidly reached 60—80% confluence in another 5 days. Im-
portantly, the cartilage chips were retained and maintained
until passage 3 to mimic the stem/progenitor niche ex vivo
and allow more CPC outgrowth. The morphological char-
acteristics of CPCs were observed with reverted light
microscope (Olympus BX71).

Flow cytometry analysis
The cell surface antigen profile of paired mCPCs (n=6
donors) was analyzed by flow cytometry. mCPCs at
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passage 3 were harvested by trypsin digestion, and anti-
bodies were stained individually (phycoerythrin (PE)-
conjugated monoclonal antibodies against human CD29,
CD44, CD73, and CDI166; fluorescein isothiocyanate
(FITC)-conjugated monoclonal antibodies against hu-
man CD45, CD90, and CD271; and allophycocyanin
(APC)-conjugated antibodies against CD31 and CD105;
eBioscience) for 30 min in the dark at 4°C. After 2
washes with phosphate-buffered saline (PBS), events
were collected by flow cytometry with a FACScalibur
system (BectoneDickinson), and the data were analyzed
using FlowJo 7.6 software.

Growth kinetics and CCK-8 assay

The growth kinetics was determined using the trypan
blue exclusion cell count method for hemocytometer cell
counting [29]. Briefly, paired mCPCs (n = 6 donors) were
cultured in 48-well plates at 2 x 10* cells/well and har-
vested every 3days for hemocytometer cell counting
during a period of 19days. The Cell Counting Kit 8
(CCK-8, Dojindo, Japan) assay was conducted according
to a previous study [30]. In brief, CPCs at passage 4 were
seeded in 96-well plates (1x 10% cells/well, 5 wells in
each group) and maintained in culture medium, and the
CCK-8 solution was added at a ratio of 100 ul/ml and in-
cubated at 37 °C for 1 h. The absorbance was measured
at a wavelength of 450 nm on days 1, 4, 7, 10, 13, 16,
and 19.

Colony-forming unit fibroblast formation (CFU-F) assay
Passage 4 paired mCPCs (n =6 donors) in each group
were adjusted to different cell numbers (1 x 10> and 5 x
10? cells/well). Aliquots of cell suspensions were added
to 6-well culture plates and were maintained in culture
for 10 days. Crystal violet was used to stain the colonies,
and their vertical gross appearances were imaged by
digital photography.

Evaluation of the multi-potency of mCPCs

Osteogenic, adipogenic, and chondrogenic differentiation
was assayed. The previously reported protocols for CPC
differentiation were used with minor revision in the
current study [23]. Briefly, for osteogenic differentiation,
cells were harvested and incubated in osteogenic induc-
tion medium (10 mM of glycerol-2-phosphate, 0.1 uM of
dexamethasone, and 20 uM of ascorbic acid) for 14 or
28 days. The osteogenic activity was assessed at day 14
by alkaline phosphatase (ALP) staining and at day 28 by
Von Kossa staining, respectively. For adipogenic differ-
entiation, CPCs were cultivated at 1 x 10* cells/well in
48-well cell culture plates, adipogenic induction medium
(1 uM of isobutylmethylxanthine and 10”2 uM of dexa-
methasone) was supplemented, and Oil Red O staining
(day 14) was performed to assess the adipogenic
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potency. For chondrogenic differentiation, 4 x 10° CPCs
were centrifuged in polypropylene tubes to form a pel-
leted micromass and maintained in chondrogenic induc-
tion medium consisting o-MEM supplemented with
10'M  of dexamethasone, 1% (vol/vol) insulin-
transferrin-sodium selenite, 50 uM of ascorbate-2 phos-
phate, 1mM of sodium pyruvate, 50 pg/ml (wt/vol) of
proline, and 20 ng/ml (wt/vol) of transforming growth
factor (TGF-fB3). On day 28, the pellets were fixed and
sectioned. The development of chondrocytes and accu-
mulation of the cartilage matrix were evaluated by
hematoxylin eosin, toluidine blue, and Safranin O stain-
ing. The expressions of Sox-9 (SRY-type high-mobility
group box-9) and Col-II (collagen type II) were detected
by immunohistochemical assays. The images were cap-
tured using a microscope under brightfield mode. Chon-
drogenesis was also analyzed according to a previously
published histological pellet scoring system [31]. Data
were obtained from six paired samples, with each re-
peated in triplicates.

Histologic and immunohistochemical analysis

The osteochondral specimens of initial proximal tibial
cut during the arthroplasty procedure were also col-
lected for histologic immunohistochemical analysis (n =
18 donors). Samples were placed in 10% formalin before
processing. For each patient, separate lateral and medial
tibial plateau pieces were decalcified using 10% ethylene-
diaminetetraacetic acid (EDTA, Sigma) for 3—4 months
and then mounted on paraffin blocks. Decalcified tissue
specimens were stained with hematoxylin and eosin. Im-
munohistochemistry for CD105 and CD271 (NGF recep-
tor) staining was performed. Mouse anti-human CD105
and CD271 monoclonal antibody (Abcam) was used at a
dilution of 1:50. Digital image analysis was performed to
evaluate relative cartilage damage (including the cartil-
age-bone interface) and CD105" and CD271" cells
in vivo distribution. For each sample, the whole tissue
area was scanned using an OlympusX71 microscope
under brightfield mode depending on the size of the sec-
tion; 2—5 images were captured for the cartilage area (in-
cluding the cartilage—bone interface).

OA synovial fluid-mediated migration of mCPCs

Migration of paired mCPCs (n=5 donors) on stimula-
tion with OA pro-inflammatory synovial fluid [32] (from
three symptomatic idiopathic KOA patient) was analyzed
in 24-well transwell plates (8 um pore size of polycar-
bonate membranes, Corning) as described previously
[33]. In brief, 5x10* mCPCs in serum-free a-MEM
medium were seeded in the upper wells. The lower wells
were filled with 0%, 20%, and 40% OA synovial fluid.
After being incubated at 37 °C for 10 or 20 h, cells that
migrated through the polycarbonate membrane were
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fixed with acetone/methanol (1:1, vol/vol). Non-
migrating cells on top of the membrane were removed.
Migrated cells were stained by 4’',6-diamidino-2-pheny-
lindole (DAPI) and crystal violet and counted micro-
scopically. Three representative photographs (left, right,
and central) of each well were taken, migrated cells per
picture were counted using Image ] (National Institutes
of Health, Bethesda, MD), the total number of migrated
cells was extrapolated to the total well, and the migra-
tion rates were calculated.

Real-time quantitative polymerase chain reaction (RT-
qPCR)

RT-qPCR was performed to further evaluate their multi-
lineage differentiation and RNA sequencing validation.
After maintaining in osteogenic, adipogenic, and chon-
drogenic differentiation media at a density of 5x
10* cells/well in 6-well cell culture plates for 10 days, the
total RNA was extracted using Trizol reagent (Fermen-
tas) and reverse transcribed using an mRNA Selective
PCR Kit (TaKaRa) according to the manufacturer’s in-
structions. Human runt-related transcription factor 2
(RUNX2), osteocalcin (OCN), CCAAT/enhancer-bind-
ing protein alpha (CEBP/a), peroxisome proliferator-
activated receptor gamma (PPARYy), sex-determining re-
gion Y-box 9 (Sox-9), and collagen type II (Col-II)
c¢DNA were amplified by real-time PCR using a SYBR
PCR Master Mix Kit (Sigma-Aldrich). The primers were
synthesized by Invitrogen (Shanghai, China), and the se-
quences are shown in Supplementary Table 2. The
mRNA levels were normalized to the value of B-actin or
RPL13a (housekeeping genes for Sox-9 and Col-II only)
[34]. Mean fold changes were calculated. Data presented
are the mean of the six different donors, with each re-
peated in triplicates.

mRNA expression profile of mCPCs by RNA sequencing
analysis

We used equal amounts of total RNA from each of 6 pa-
tients’ paired mCPCs from grade 1-2 and grade 3-4
osteoarthritic cartilage. The RNA sequencing was per-
formed by GeneWIZ Technology (Suzhou, China).
Briefly, the quality control of gene expression profile
analysis was performed by using Agilent bioanalyzer
2100 system. The mRNAs were captured by NEBNext
Poly(A) mRNA magnetic isolation module. Library con-
struction was conducted by NEBNext ultra RNA library
RNA PREP kit for [lumina. Library purification was
conducted by Beckman Agencourt AMPure XP beads.
Library quantification and results verification were per-
formed by Agilent bioanalyzer 2100 and Qubit system.
CBOT clustering and Hiseq were respectively performed
by using TruSeq PE cluster Kit V4 and TruSeq SBS Kit
V4-HS. Bioinformatics analysis was performed according
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to the manufacturer’s protocols. We then selected rela-
tive expression of genes associated with OA pathogen-
esis (involved in mesenchymal stem cell [MSC]
tripotentiality, collagen metabolism, chemotaxis, angio-
genesis, and control of osteoclast activation and other
genes). We clustered the significantly increased and de-
creased genes according to various biological processes,
cellular component, and molecular function and ana-
lyzed the differentially expressed genes in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
[35]. Expressions of arbitrarily selected dysregulated
genes were validated by RT-qPCR (# = 6 donors).

Statistical analysis

Data were presented as mean values and standard devi-
ation (SD). The normal distribution of data was con-
firmed with the Kolmogorov-Smirnov test. As for
normally distributed data (flow cytometric measure-
ments, CFU-F assays, growth kinetic parameter, gene ex-
pression, and migration rates between mCPCs from
paired grade 1-2 and grade 3—4 cartilage), a paired ¢ test
was employed; for ordinal grading data such as the pellet
histological scores, a Wilcoxon signed-rank test was ap-
plied. A p value <0.05 was considered statistically sig-
nificant. All tests were performed using IBM SPSS
Statistics 20.0.

Results

The morphological characteristics of mCPCs of knee OA
patients

The cartilaginous tissues for CPC culturing were har-
vested from the articular cartilages of knee OA patients
(Fig. 1a, b). Approximately 10 days after the primary cul-
ture, fibroblast-like cells migrated out from the digested
cartilage fragments and adhered to the plastic dishes in
both grade 1-2 and grade 3-4 groups (Fig. 1c). More
out-migrated cells can be seen around the grade 3-4
OA cartilage fragments than the grade 3—4 OA cartilage
fragments in the same isolation and culture system
(Fig. 1c). A primary culture confluence of 60-80% was
usually achieved within 15 days. The cell morphology of
mCPCs is macroscopically identical. An adherent layer
of vortex-shaped cells developed, and cartilage pieces
can still be seen within 28 days at P3 (Fig. 1c).

mCPCs from grade 3-4 cartilage highly expressed CD271
The results of immunophenotyping showed that mCPCs
from both grade 1-2 and grade 3—-4 cartilage were
homogenously negative for CD34, and CD45, and posi-
tive for CD29, CD44, CD73, CD90, CD105, and CD166
expressions (Fig. 1d). However, the expression of CD271
was significantly higher in grade 3-4 cartilage (32.5+
17.3%) in comparison with grade 1-2 cartilage (22.5+
10.8%) (p =0.034) (Fig. le).
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The mCPCs (grade 3-4) exhibited similar proliferation
potential and self-renewal capacity to that of mCPCs

(grade 1-2)

To investigate the proliferation ability, hemocytometer cell
counting and a CCK-8 assay were performed. The results
of the hemocytometer cell counting proliferation assay
(Supplementary Fig. 1A and B) showed that mCPCs in

both grade 1-2 and grade 3-4 cartilage exerted similar
proliferation ability (p >0.05). Consistently, similar cell

proliferation is also reflected by the CCK-8 assay (Supple-

mentary Fig. 1C). Self-renewal potential was measured in
a CFU-F assay. mCPCs in both grade 1-2 and grade 3-4
cartilage performed similarly with comparable clonogenic
ability (Supplementary Fig. 1D and E).
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mCPCs from the grade 3-4 OA cartilage showed stronger
osteogenic, adipogenic, and weaker chondrogenic
potential

mCPCs from both grade 1-2 and grade 3-4 cartilage
were able to differentiate toward the osteogenic, adipo-
genic, and chondrogenic lineage. In particular, mCPCs
in grade 3—4 cartilage display enhanced osteo- and adi-
pogenic differentiation capacity compared to mCPCs in
grade 1-2 cartilage. mCPCs from grade 3—4 cartilage ex-
hibited higher ALP activity (Fig. 2a) and higher amount
of calcium deposition (Fig. 2b) than that of CPCs from
grade 1-2 cartilage. Also, mCPCs from grade 3—4 cartil-
age harbored higher amount of intracellular Oil Red O-
stained lipids than that of mCPCs from grade 1-2 cartil-
age (Fig. 2¢). Consistent with the results of cytochemical
staining analysis, mCPCs from grade 3—4 cartilage after
differentiating induction exhibited high levels of mRNA
expression of osteogenic markers (RUNX-2 and OCN)
(Fig. 2f) and adipogenic transcription factors (CEBP/a
and PPARYy) (Fig. 2g) than that of mCPCs from grade 1-
2 cartilage. However, the results of HE, toluidine blue,
and Safranin O staining as well as immunostaining of
Col-II and Sox-9 showed that mCPCs from grade 3-4
cartilage exhibited less capacity of pellets formation than
their counterparts from grade 1-2 cartilage (Fig. 2d, e).
In addition, the expression of chondrogenic transcription
factors Col-II and Sox-9 further confirmed the decreased
chondrogenic capacity of mCPCs from grade 3—4 cartil-
age (Fig. 2h).

mCPCs from the grade 3-4 OA cartilage showed stronger
migration potential

mCPCs from both grade 1-2 and grade 3-4 cartilage
were cultivated in the presence of OA synovial fluid
(OASF, 20% and 40%) for 10h or 20h. Cell culture
medium without OASF serves as negative control. The
results of crystal violet and DAPI staining showed that
only a few CPCs passed the bottom of the transwell
chambers in the absence of OASF. However, CPCs from
both grade 1-2 and grade 3-4 cartilage showed strong
migratory activities upon the stimulation of OASF (20%
and 40%) (Fig. 3a—d, and Supplementary Fig. 2). In
addition, the migration rate of mCPCs from the grade
3—4 OA cartilage was remarkably higher than that of
mCPCs from the grade 1-2 OA cartilage in a time-
dependent and OASF concentration-dependent manner
(Fig. 3a—d, and Supplementary Fig. 2).

In vivo distribution of CD271* and CD105" cells in grade
1-2 and grade 3-4 OA cartilage

We performed histologic assessment of osteochondral
specimens from grade 1-2 and grade 3—4 human knee
OA articular tissues (n = 18 donors). Following decalcifi-
cation, 12 of 18 paired tissue samples had sufficient
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tissue quality to enable histologic analysis. Grade 1-2
cartilage showed relatively normal osteochondral struc-
ture, with or without slight fibrillation (Fig. 4a), while
grade 3—4 cartilage was characterized by fissured or de-
nuded surface with chondrocyte clusters, multiple tide-
marks, and thicken trabecular area in the subchondral
bone (Fig. 4b). In addition, we investigated the distribu-
tion of CD105" and CD271" cells in osteochondral tis-
sues of paired grade 1-2 and grade 3—4 cartilage from 8
randomly selected patients. CD105-positive cells were
observed in the superficial cartilage and reticular pattern
as well as in the bone marrow cavities of the subchon-
dral bones in both grade 1-2 and grade 3—-4 cartilage
(Fig. 4c—f, Supplementary Fig. 3). Interestingly, some
cartilage matrixes are positive to CD105 staining, which
may be explained by the presence of soluble CD105 [36].
Furthermore, more CD105 positive cells were observed
in the grade 3—4 superficial cartilage (Fig. 4e) and the
bone lining locations near the osteochondral junction
area (Fig. 4f), which may suggest that CD105" cells mi-
grate toward and accumulated in damaged cartilages.
Moreover, we found a small number of CD271" cells re-
sided in the superficial cartilage of grade 1-2 OA cartil-
age (Fig. 4g), while more CD271" cells were observed in
the superficial cartilage of grade 3-4 OA cartilage
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Grade 1-2

Grade 3-4

Fig. 4 The in situ distribution of CD105* and CD271" cell in paired
grade 1-2 and grade 3-4 OA cartilages. a, b The general
morphological characteristics of paired human knee osteoarthritic
cartilages were showed by HE staining (n =12 donors). c-f The
results of CD105-targeted immunohistochemical staining showed
that more CD105" cells remained present in the grade 3-4 OA
cartilage and the bone lining locations near the osteochondral
junction area as showed by the arrow (n =8 donors). For CD271"
cell distribution, only a few CD271% cells were observed in the
superficial cartilage surface of grade 1-2 OA cartilage (g). However,
more CD2717 cells were found in the superficial cartilage surface of
grade 3-4 OA cartilage as showed by the arrow (i). In addition,
CD271* cells distributed near the osteochondral junction regions
and reticular pattern of subchondral bone marrow cavities in both
grade 1-2 and grade 3-4 OA subchondral bones (h and j). Scale
bars represent 500 um (a, b) and 100 um (c-h), respectively

(Fig. 4i). Notably, CD271" cells distributed near the
osteochondral junction regions and reticular pattern of
subchondral bone marrow cavities in both grade 1-2
and grade 3—4 OA subchondral bones (Fig. 4h, j).

The gene expression profile of mCPCs from grade 1-2
and grade 3-4 OA cartilage

The gene expression profile of mCPCs from grade 1-2
and grade 3-4 OA cartilage was analyzed in 6 donors.
After normalization, mCPCs from grade 1-2 cartilage
were set as log, fold change > 1.0 and p <0.05 to deter-
mine the differentially expressed mRNAs. Compared to
that of mCPCs from grade 1-2 cartilage, the gene ex-
pression of mCPCs in grade 3—4 cartilage indicated that
the mRNA expression of at least 134 genes remarkably
changed (105 genes upregulated and 29 genes downregu-
lated), including the genes involved in various biological
processes, cellular component, molecular function, the ex-
pression of some genes related to the cell proliferation
and intracellular signal transduction, plasma membrane
and extracellular space, protein heterodimerization activ-
ity, and growth factor activity (Fig. 5a, b). Nineteen dysreg-
ulated genes that are known to be involved in human OA
include CXCL6, CXCL1, FGF1, BMP4, FGFI10,
ALDH3A1l, RERG, CACNA2D3, FGF9, GUCY1A3,
SMOC2, LMXI1B, FBN2, HPD, KIAA1244, LAMAS5,
FGF5, LRP2BP, and HGF (Fig. 5¢). Four dysregulated
genes were selected for further validation by RT-qPCR.
The results showed that the expressions of genes encoding
chemokines proteins (CXCL6 and CXCL1) significantly
upregulated, but the expressions of genes encoding
growth factor and extracellular matrix (ECM) proteins
(HGF and LAMAS) were remarkably decreased (Fig. 5d).

Discussion

In the present study, we isolated novel subpopulations of
CPCs from paired cartilaginous tissues by virtue of their
cell migration capacity. We found that mCPCs from
Outerbridge grade 1-2 and grade 3—4 cartilage shared
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similar cell proliferation and self-renewal ability, but the
mCPCs (grade 3—4) showed enhanced osteo-adipogenic
activities and decreased chondrogenic capacity. Import-
antly, the mCPCs (grade 3—4) exhibited stronger cell mi-
gration in response to OASF. Notably, more CD105"/
CD271" cells were found resided in grade 3—4 superficial
articular cartilages and areas of osteochondral conjunc-
tion. Additionally, increased expression of genes encod-
ing chemokines and decreased expression of genes
encoding growth factor and extracellular matrix were
observed.

The imbalance of extracellular matrix degradation and
synthesis in the progress of OA caused by the combin-
ation of mechanical and biochemical factors were con-
sidered as fundamental factors contributing the
destruction of tissue homeostasis. In recent years, in-
creasing attentions have been focused on the fact that
the pathological changes of tissue-specific stem cells in ar-
ticular cartilages which may be closely involved in the

development of osteoarthritic diseases. However, inconclu-
sive results were observed in previous studies. An earlier
study reported declined potential of CPCs from OA pa-
tients [5]. However, another study described that adult
CPCs, particularly those from moderately affected regions
of the osteoarthritic joints, exhibit superior chondrogenic
potential [37]. In addition, the independent studies pursued
by Xia et al. and Mantripragada et al. demonstrated that
CPCs from the degraded cartilages of the medial condyle
and relatively normal cartilages of the lateral side showed
similar chondrogenic potential [14, 18, 19].

The inconclusive data might result from the
heterogenous CPC isolating protocols and functional in-
vestigations in independent labs. First, almost all of the
CPCs above were obtained from the released cells post
long-time collagenase digestion with either cell colony
formation cell expansion [6] or flow cytometry cell sort-
ing [19, 38] except Koelling et al. obtained cells that mi-
grated from human cartilage [5]. Notably, our previous
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study demonstrated that CPCs migrated from human
non-osteoarthritic cartilages represent more regenerative
cell subpopulation in cartilages than that of released cells
[12]. Second, previous studies showed that the digestion-
induced released cells may partially lose their biological
functions [20, 21]. In addition, maintaining the bone
marrow niche ex vivo in primary culture showed bene-
fits to maintain stem cell properties [23, 39]. In the
present study, the cartilage chips were cultivated and
retained during cell passaging until passage 3 so as to
mimic the CPC niche and allow more CPC outgrowth.
Third, osteoarthritic tibial plateau cartilage is usually
badly damaged in KOA due to its unique mechanical
status. To the best of our knowledge, the differentiation
fates of tissue-specific stem/progenitor cells were greatly
influenced by mechanical factors. Discher et al. de-
scribed that a local biochemical and mechanical niche
with complex and dynamic regulation control stem cell
sense [40]. Yang et al. reported that stem cells remember
past physical signals, and mechanical memory and dos-
ing influence stem cell fate [41].

In addition to cell multi-potency, the migratory ability
of stem/progenitor cells is essential for cartilage regener-
ation. It has been reported that both trauma and degen-
erative lesions activate endogenous CPCs migration by
releasing trauma-associated and OA inflammatory fac-
tors so as to chemotactically induced CPC migration to
injured sites [5, 7, 28, 42]. In the current study, we found
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cartilage showed apparent migration capacity in re-
sponse to OASF. Interestingly, mCPCs (grade 3—-4) ex-
hibited stronger cell migration. The data of CD105" cells
in vivo distribution in cartilage may be helpful to under-
stand the phenomenon. The CD105" cell number in the
grade 3—4 OA cartilage was remarkably higher than that
of the grade 1-2 OA cartilage. In addition, these cells
mainly accumulated in superficial cartilages and areas of
osteochondral junction. Moreover, CPCs have also been
reported to be chemotactic migratory with nerve growth
factor (NGF) treatment and result in extracellular matrix
catabolism indicated by increased sulfated glycosamino-
glycan release and matrix metalloprotease (MMP) ex-
pression [43]. Consistently, the results of flow cytometry
and histopathological analysis showed higher expression
of CD271 in grade 3—4 cartilage-derived mCPCs and in
osteo-chondral tissues of grade 3—4 OA specimen, which
may contribute to late-stage OA articular cartilage de-
generation. However, we are aware that CPCs and other
cells including MSCs may share the cell markers in the
subchondral bones, and further investigations are needed
to find the unique cell markers for CPCs in the future.
To further explore the regulatory genes of osteoarth-
ritic CPCs, we performed an analysis of the gene expres-
sion profile of mCPCs from grade 1-2 and grade 3-4
cartilage. Notably, mCPCs (grades 3—4) overall exhibited
higher levels of chemokines (CXCL-1, CXCL-6) and
lower growth factor (HGF) and ECM protein (LAMADS)

that both mCPCs from grade 1-2 and grade 3-4 than mCPCs (grades 1-2). Previous study have
<
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Fig. 6 Schematic suggestion of the pathological changes of mCPCs in the progression of OA. In the progressing of OA, more mCPCs migrated
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suggested innate associations between OA severity and
synovial fluid CXCL1 concentration [44] while the up-
regulation of CXCL-1 and CXCL-6 is also responsible
for stronger migration of mCPCs (grades 3—4). Down-
regulation of HGF may be responsible for decreased
chondrogenic performance of mCPCs (grades 3—4) in
cartilage because the previous study have demonstrated
that HGF-rich exosome plays a pivotal role in promoting
cartilage repair [45]. Also, the downregulated expression
of gene LAMAS5 has been suggested to hamper the
maintenance and function of the ECM which are critical
components in stem cell niche. Another study also
proved that the heterozygous LAMAS5 mutation is
closely associated with OA via regulating ECM proteins
(COL1A1, MMP1, and MMP3) [46]. Nevertheless, the re-
sults of our current mRNA sequencing only showed
changes of some genes in CPCs, and further researches
are needed to explore underlying molecular mechanisms.

Thus, we speculated pathological changes of mCPCs
in the progression of OA (Fig. 6). Although more
mCPCs migrated to the degenerative cartilage of lesion
sites in the progress of later staged OA, the chondro-
genic capacity of these cells are impaired, which changed
the self-repairing capacity of articular tissues. Notably,
our findings suggested that mCPCs may be optional cell
targets for OA treatment. Blocking impaired mCPC mi-
gration may delay the articular degeneration. Addition-
ally, rescuing the multi-potency of mCPCs may be
helpful to promote tissue repair in later-stage OA.

We acknowledge that there were some limitations in
our study. First, the CPCs in grade 1-2 degenerative car-
tilages are not equated with the fully healthy CPCs. Sec-
ond, we cannot exclude the possibility that CPC
properties were influenced by anatomical (medial-to-lat-
eral or superficial-to-deep) and/or mechanical differ-
ences in osteoarthritic cartilage [27]. Third, the cell
surface markers of our ex vivo cultured mCPCs is differ-
ent from that of in vitro culture-expanded [47].

Conclusions

We have isolated migratory progenitor cell populations
from both grade 1-2 and 3—4 human OA cartilages. Al-
though mCPCs in the grade 3-4 OA cartilage present
stronger migratory potential, the chondrogenic capaci-
ties of these cells are impaired. Our findings may be
helpful in understanding the role of mCPCs in the
pathogenesis of OA progression.
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