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Abstract

Background: Rheumatoid arthritis (RA) is a chronic, autoimmune disorder characterized by joint inflammation and
pain. In patients with RA, metabolomic approaches, i.e, high-throughput profiling of small-molecule metabolites, on
plasma or serum has thus far enabled the discovery of biomarkers for clinical subgroups, risk factors, and predictors
of treatment response. Despite these recent advancements, the identification of blood metabolites that reflect
quantitative disease activity remains an important challenge in precision medicine for RA. Herein, we use global
plasma metabolomic profiling analyses to detect metabolites associated with, and predictive of, quantitative disease
activity in patients with RA.

Methods: Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was
performed on a discovery cohort consisting of 128 plasma samples from 64 RA patients and on a validation cohort
of 12 samples from 12 patients. The resulting metabolomic profiles were analyzed with two different strategies to
find metabolites associated with RA disease activity defined by the Disease Activity Score-28 using C-reactive
protein (DAS28-CRP). More specifically, mixed-effects regression models were used to identify metabolites
differentially abundant between two disease activity groups (“lower”, DAS28-CRP < 3.2; and “higher”, DAS28-CRP >
3.2) and to identify metabolites significantly associated with DAS28-CRP scores. A generalized linear model (GLM)
was then constructed for estimating DAS28-CRP using plasma metabolite abundances. Finally, for associating
metabolites with CRP (an indicator of inflammation), metabolites differentially abundant between two patient
groups (“low-CRP”, CRP < 3.0 mg/L; "high-CRP”, CRP > 3.0 mg/L) were investigated.
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confounders (P < 0.05).

Inflammation

Results: We identified 33 metabolites differentially abundant between the lower and higher disease activity groups
(P < 0.05). Additionally, we identified 51 metabolites associated with DAS28-CRP (P < 0.05). A GLM based upon
these 51 metabolites resulted in higher prediction accuracy (mean absolute error [MAE] + SD: 1.51 + 1.77)
compared to a GLM without feature selection (MAE = SD: 2.02 + 2.21). The predictive value of this feature set was
further demonstrated on a validation cohort of twelve plasma samples, wherein we observed a stronger correlation
between predicted and actual DAS28-CRP (with feature selection: Spearman’s p = 0.69, 95% Cl: [0.18, 0.90]; without
feature selection: Spearman’s p = 0.18, 95% Cl: [-0.44, 0.68]). Lastly, among all identified metabolites, the
abundances of eight were significantly associated with the CRP patient groups while controlling for potential

Conclusions: We demonstrate for the first time the prediction of quantitative disease activity in RA using plasma
metabolomes. The metabolites identified herein provide insight into circulating pro-/anti-inflammatory metabolic
signatures that reflect disease activity and inflammatory status in RA patients.

Keywords: Rheumatoid arthritis, Metabolomics, Plasma metabolites, DAS28-CRP, Biomarker, Machine learning,

Background

Rheumatoid arthritis (RA) is a chronic, autoimmune in-
flammatory disease primarily affecting the small dia-
rthrodial joints and other organ systems [1-4] that can
eventually lead to bone/cartilage erosion, joint deformity,
loss in mobility, and organ damage [5]. Known to be as-
sociated with a variety of factors, such as genetic suscep-
tibility [6], age [7], sex [8], smoking status [9], and
dietary habits [10], RA is diagnosed in nearly 5 per 1000
adults worldwide, and women are 2 to 3 times more
likely to develop RA than men [5]. In addition, as is the
case with many complex and progressive disorders, pa-
tients with RA exhibit vast heterogeneity in clinical
symptoms (e.g., joint inflammation, swelling, pain, stiff-
ness) [11] and in responses to methotrexate and other
disease-modifying anti-rheumatic drugs (DMARDs) [12].
Furthermore, immune cells (mainly, B cells, T cells, and
macrophages) and cytokines are known to be implicated
in RA pathogenesis [13]. For example, Haringman et al.
observed that the abundance of macrophages in synovial
tissue was positively correlated with disease activity [14],
and Chung et al. identified significant differences in the
levels of multiple cytokines (e.g., IL-6, IL-11, LIF) be-
tween RA and healthy controls [15]. In this regard, fur-
ther  understanding of the pathophysiological
mechanisms that drive either progression or remission
in RA disease activity would be important for identifying
prognostic factors and developing more effective treat-
ments [5, 16].

Having practical measures of disease activity is essen-
tial for determining the course of RA treatment and for
monitoring patient response [3]. To this end, several
studies have suggested strategies to quantify (or
categorize) RA disease activity by using clinical and in-
flammatory core components, which include, but are not
limited to, the number of tender and swollen joints,

erythrocyte sedimentation rate (ESR), serum C-reactive
protein (CRP) levels, and patients’ pain levels [17-20].
Among these various strategies, the modified Disease
Activity Score that considers 28 joints (DAS28) with ei-
ther ESR (DAS28-ESR) or CRP (DAS28-CRP) is cur-
rently one of the most well-recognized and
recommended measures in RA [20].

An emerging area of RA research is in using high-
throughput metabolomic profiling approaches, which
comprehensively measure all small-molecule biochemi-
cals in a biological specimen (e.g., plasma, serum, urine,
synovial fluid) to enable biomarker discovery and novel
insights into the biochemical processes governing dis-
ease pathophysiology [11, 21-23]. In particular, recent
studies have demonstrated the promise of using such
metabolomic technologies on patient-derived biospeci-
mens for classifying patients with RA according to their
disease activity categories [21, 24, 25], and for identifying
metabolic signatures predictive of treatment response
[26-29]. For instance, Teitsma et al. used metabolomic
profiling in serum samples from early RA patients to
identify metabolites and metabolic pathways that were
significantly associated with sustained, drug-free remis-
sion (DAS28 < 2.6) after tocilizumab- or methotrexate-
based therapy [24]. Likewise, Sasaki et al. identified 15
and 20 metabolites in plasma and urine, respectively,
that were differentially abundant between active RA
(DAS28-ESR > 3.2) and inactive RA (DAS28-ESR < 3.2)
[25]. These findings suggest that a wider application of
global metabolomic profiling—coupled with advanced
analytics [30]—can lead to the discovery of novel and
predictive biomarkers that complement current standard
laboratory tests for assessing disease activity in RA.

To date, a global metabolomic profiling analysis to
demonstrate the predictive value of blood biochemicals
in estimating disease activity scores for patients with RA



Hur et al. Arthritis Research & Therapy (2021) 23:164

has remained elusive. In this study, on 128 plasma meta-
bolomic profiles from 64 RA patients, we utilize a multi-
approach analysis to uncover metabolites that reflect
and predict RA disease activity. First, we identify metab-
olites that stratify patients of “higher” (DAS28-CRP =
3.2) and “lower” (DAS28-CRP < 3.2) disease activity
groups. Next, we pinpoint specific metabolites that sig-
nificantly associate with DAS28-CRP. Interestingly, a few
of the metabolites identified through these two ap-
proaches were able to differentiate between the two
groups of patients divided according to their C-reactive
protein (CRP) levels in blood (“high-CRP,” CRP > 3.0
mg/L; “low-CRP,” CRP < 3.0 mg/L); these metabolites
may possibly reflect metabolic perturbations affected by
worsening inflammatory activity. Finally, we utilize a ma-
chine learning technique to predict DAS28-CRP with
plasma metabolite abundances. Importantly, we find that
the feature selection step led to improved performance
in predicting quantitative disease activity, and this trans-
lated reasonably well to a validation cohort. Taken to-
gether, our findings described herein support a key role
for high-throughput metabolomic technologies in identi-
fying blood-borne metabolic signatures of RA disease ac-
tivity and lay the groundwork for monitoring disease
progression and systemic inflammation using blood sam-
ples alone.

Materials and methods

Study population, subject enroliment, sample collection,
and demographic characteristics

The study population consisted of consecutive patients
with RA attending the outpatient practice of the Division
of Rheumatology at Mayo Clinic in Rochester, MN. Eli-
gibility required patients to be adults 18 years of age or
older with a clinical diagnosis of RA by a rheumatologist,
fulfilling the American College of Rheumatology/Euro-
pean League Against Rheumatism 2010 revised classifi-
cation criteria for RA [2]. Patients were excluded if they
did not comprehend English, were unable to provide
written informed consent, or were members of a vulner-
able population (e.g., incarcerated subjects). This led to a
total of 76 patients fulfilling the eligibility criteria, who
were partitioned into two groups (Table 1): for the dis-
covery cohort of this study, 64 patients with available
blood samples from at least two outpatient visits 6—-12
months apart were included (128 total samples); for the
validation cohort, 12 patients whose blood samples were
available from only a single outpatient visit were in-
cluded (12 total samples). Demographic and clinical
data, including the numbers of tender and swollen joints,
patient and evaluator global assessments, CRP (mg/L),
body mass index (BMI, kg/m?), smoking status, and re-
sults for rheumatoid factor (RF, IU/mL) and anti-cyclic
citrullinated peptide antibodies (anti-CCP), were
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collected from the electronic medical records. The pa-
tient samples (140 in total) in the study had established
disease with a mean age of 63.54 (range 32-86), and
69.7% (53 of 76) were female. Disease activity varied
from remission to high disease activity, with a DAS28-
CRP mean of 3.0 (range 1.2-7.0), see Additional file 1
for the distribution of DAS28-CRPs corresponding to all
study participants.

Metabolomic profiling

Untargeted metabolomic profiling of plasma samples
from both discovery and validation cohorts through
ultra-high-performance liquid chromatography-tandem
mass spectrometry (UPLC-MS/MS) was performed by
Metabolon Inc.’s (Durham, NC, USA) Discovery HD4™
platform. Detailed descriptions of all methods regarding
metabolomic profiling are available in Additional file 4.

Analysis Workflow

Figure 1 provides a summary of the analytic strategy
used on the 128 plasma samples of the discovery cohort
to identify the associations between metabolites and RA
disease activity. The analysis workflow consists of two
complementary approaches: using mixed-effects logistic
regression, the first approach identifies metabolites that
are differentially abundant between the higher and lower
disease activity groups, which were determined by
DAS28-CRP scores [18-20, 31] (Fig. 1A); the second ap-
proach uses mixed-effects linear regression to model the
relationship between DAS28-CRP and metabolite abun-
dances, allowing the detection of key biochemical fea-
tures that associate with quantitative disease activity
(Fig. 1B). To test the predictive accuracy of these se-
lected features when incorporated into a generalized lin-
ear model, an additional cohort of twelve plasma
metabolomic profiles (from twelve RA patients obtained
at single time points) was collected as an independent
validation set.

Pre-processing of metabolomic profiling data

Statistical analyses on untargeted metabolomic data were
performed using scaled imputed data provided by Meta-
bolon, Inc. Briefly, the raw data were normalized to ac-
count for inter-day variation, which is a result of UPLC-
MS/MS runs over multiple days; then, the peak inten-
sities were rescaled to set each metabolite’s median
equal to 1. Missing values were then imputed with the
minimum observed value of the metabolite across all
samples, finally yielding the scaled imputed data. In
addition, metabolites with missing values in over 20% of
the entire samples were removed, resulting in 686 me-
tabolites remaining for further analysis. R (v3.6.1), Ime4
package (v1.1.21) [32], Python3 (v3.7.5), and sklearn
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Table 1 Demographic characteristics of study participants
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Discovery cohort®

Validation cohort®

Number of RA patients/samples

64/128

12/12

Sex of RA patients (female/male) 44/20 9/3
Visit 1 Visit 2 -
DAS28-CRP
Mean + SD 31+£13 30+ 14 24+£13
Range (min-max) 1.5-7.0 1.2-6.6 1.7-59
Age (years)
Mean + SD 62.7 =105 635+ 106 678 £ 106
Range (min-max) 32-85 33-86 54-84
BMI
Mean + SD 306 £57 311 +£62 270 £ 4.1
Range (min-max) 224-453 22.8-478 19.0-333
N/A (n) 6 6 2
Smoking history (n)
Current (active within 3 months) 7 5 1
Former 31 32 3
Never 25 27 7
N/A 1 0 1
CRP (mg/L)
Mean + SD 891 +16.8 80+ 127 115 +217
Range (min-max) 0.29-113.0 0.7-84.0 1.0-77.1
RFY (n)
Positive 36 - 6
Negative 15 - 2
N/A 13 - 4
Anti-CCPY (n)
Positive 44 - 5
Negative 13 - 1
N/A 7 - 6
Treatment
Methotrexate use (n (%)) 48 (75.0%) 49 (76.6%) 7 (58.3%)
Methotrexate dose (mg/week)
Median 20.0 20.0 225
IQR [Qy, Q3] [15.0, 25.0] [15.0, 25.0] [17.5,25.0]
Prednisone use (n (%)) 29 (45.3%) 28 (43.8%) 4 (33.3%)
Prednisone dose (mg/day)
Median 50 50 50
IQR [5.0,7.0] [5.0,5.0] [5.0,5.0]
TNFi-bDMARDs? (n (%)) 23 (35.9%) 21 (32.8%) 3 (25.0%)
Non-TNFi-bDMARDs* (n (%)) 6 (9.4%) 7 (10.9%) 1 (8.3%)
Non-methotrexate csDMARDs (n (%)) 20 (31.2%) 27 (42.2%) 1 (8.3%)

N/A Not available, RF rheumatoid factor, Anti-CCP anti-cyclic citrullinated peptide antibodies, /QR inter-quartile range, bDMARDs biologic disease-modifying anti-
rheumatic drugs, csDMARDs conventional synthetic disease-modifying anti-rheumatic drugs (an expanded table with further information on demographic and

clinical characteristics is provided in Additional file 2 and Additional file 3)

®Training group. Plasma samples were obtained from patients at two different time points
PTest group. Plasma samples were obtained from patients at a single time point
YReported only for the first visit

Adalimumab, certolizumab, etanercept, and infliximab

“Abatacept, rituximab, and tocilizumab

MAzathioprine, hydroxychloroquine, leflunomide, and sulfasalazine
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(v0.22.2) were used to perform all data pre-processing
and statistical analyses.

Delineation of RA disease activity groups

Following previous reports [18-20, 31], samples from
RA patients were divided into two disease activity groups
based upon DAS28-CRP: “lower” (DAS28-CRP < 3.2, n
= 76) and “higher” (DAS28-CRP > 3.2, n = 52). These
pre-defined two disease activity groups were used as the
nominal response variable in a mixed-effects logistic re-
gression model to identify differentially abundant metab-
olites between the two groups. The demographic
characteristics of samples (n = 128) divided into lower
and higher disease activity are summarized in Additional
file 5.

Identification of differentially abundant metabolites while
controlling for confounding factors

The following patient characteristics were examined to
identify the potential confounding factors in the associ-
ation between plasma metabolites and disease activity
(i.e., higher or lower disease activity): age, sex, BMI,
smoking history, and treatment use (for methotrexate,
prednisone, non-methotrexate c¢sDMARDs, TNFi-
bDMARDs, and non-TNFi-bDMARDS). Based upon
Fisher’s exact test, patient age (age < 60, age > 60) and
sex (male, female) were observed to have statistically sig-
nificant associations with the two disease activity groups;
the P-value for age and sex was P = 0.01 (odds ratio
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[OR] = 2.74, 95% confidence interval [CI] = 1.15-6.73)
and P = 0.02 (OR = 0.37, 95% CI = 0.14-0.88), respect-
ively. On the other hand, no statistically significant asso-
ciations were observed between these two disease
activity groups and BMI (BMI < 30, BMI > 30; P = 0.32),
disease duration (duration < 9years, duration > 9 years;
P = 0.14), smoking history (smoked at least once, never
smoked; P = 0.36), or treatment use (user, non-user) for
methotrexate (P = 0.83); prednisone (P = 0.58); TNFi-
bDMARD:s, i.e., adalimumab, certolizumab, etanercept,
and infliximab (P = 0.18); non-TNFi-bDMARDs, i.e.,
abatacept, rituximab, and tocilizumab (P = 0.76); or
other non-methotrexate ¢sDMARDs, i.e., azathioprine,
hydroxychloroquine, leflunomide, and sulfasalazine (P =
0.71). In addition, no significant changes in treatment
use were observed between the two visits; P-values of
the associations between treatment use and time point
based upon McNemar’s chi-squared test for paired nom-
inal data were as follows: methotrexate (P = 1), prednis-
one (P = 1), TNFi-bDMARDs (P = 0.75), non-TNFi-
bDMARDs (P = 1), and non-methotrexate csDMARDs
(P = 0.07). Therefore, the mixed-effects logistic regres-
sion model was adjusted for age and sex as fixed effects,
but not for all other aforementioned covariates. In ac-
cordance with these results, age and sex have been previ-
ously reported to be connected to RA disease activity
[33-35]. Herein, patient ID was considered as a random
effect in the model to account for intra-subject variance
due to having repeated measurements from a single

128 plasma metabolomic samples
(from 64 RA patients)

12 plasma metabolomic samples
(from 12 RA patients)

A) B)

Identification of
differentially abundant metabolites

}

. Assign disease activity group to each sample:
Lower (DAS28-CRP < 3.2)
- Higher (DAS28-CRP > 3.2)

o -

N

. Use mixed-effects logistic regression

1. Use mixed-effects linear regression for metabolite selection

2. Evaluate predictive performance of selected metabolites using
a generalized linear model

Modified leave-one-out
cross-validation

3. Measure predictive accuracy: Report mean absolute error (MAE)

Fig. 1 A multi-approach discovery strategy to identify metabolites indicative of RA disease activity. (A) Differentially abundant metabolites
between the higher and lower disease activity groups were identified using a mixed-effects logistic regression model adjusted for patient age
and sex, as well as for patient ID to control for having multiple samples from the same patient. (B) A selection scheme to identify metabolites
associated with DAS28-CRP. Metabolites were selected with mixed-effects linear regression. To further demonstrate their association with DAS28-
CRP, these metabolites were used to construct a generalized linear model for predicting DAS28-CRP. The predictive performance of the model
was evaluated on the discovery cohort (using a cross-validation technique) and on a validation cohort

Key metabolite selection
associated with DAS28-CRP

}

SN

Validation on an
independent test set
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patient. By controlling for patient ID (which are unique
to each patient) as a random effect, we are acknowledg-
ing the non-independence in our data, that is, sampling
that has taken place from within a patient. Leveraging
multiple samples from the same patient allows us to
compensate for the small number of samples in higher
disease activity (DAS28-CRP > 3.2) in each visit (visit 1
and visit 2 having 25 and 27 samples, respectively) by
maximizing the degree of freedom for the quantitative
disease activity measure, and thereby to boost statistical
power. Importantly, no significant difference was ob-
served in DAS28-CRP between visit 1 and visit 2 (P =
0.98, Wilcoxon signed-rank test). Metabolites whose cor-
responding coefficients of the regression model were of
P-value <0.05 were considered as differentially abun-
dant, that is, having a statistically significant association
with the disease activity group.

Selection of metabolites associated with DAS28-CRP
Selection of metabolites associated with DAS28-CRP
was performed with a mixed-effects linear regression
model (DAS28-CRP as the continuous response vari-
able), which controls for fixed effects (scaled metabolite
abundances, patients’ age and sex) and for random ef-
fects (patient ID). Satterthwaite’s degrees of freedom
method supported by ImerTest (v3.1.1) [36] was applied
to test for the statistical significance (P-value) of associa-
tions between metabolites and DAS28-CRP. P-values
were retrieved from the corresponding regression coeffi-
cients of the predictor variables.

Evaluation of predictive performance of DAS28-CRP-
associated metabolites

A generalized linear model (GLM) was used to estimate
DAS28-CRP scores using the aforementioned signifi-
cantly associated metabolites as predictor variables. The
predictive performance of the parameterized model was
evaluated by two different techniques: First, a modified
leave-one-out cross-validation approach was applied to
the 128 samples of the training group (discovery cohort).
More specifically, in each cross-validation loop, both
samples from the same patient were allocated as an in-
ternal validation set, while all remaining samples (126
samples from 63 patients) were used to select metabo-
lites significantly associated with DAS28-CRP (P < 0.05).
These selected biochemical features were then included
in a GLM for predicting DAS28-CRP scores of the
remaining two samples (of the internal validation group)
from their metabolite abundances. The second approach
considers testing a GLM, which was composed of the
DAS28-CRP-associated metabolites identified from all
128 samples of the training group, on the independent
validation group of 12 plasma samples (validation co-
hort). For both techniques, model performance was
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reported using mean absolute error (MAE) and standard
deviation (SD).

Identification of metabolites associated with treatment
use

A marginal, mixed-effects linear regression model was
used to relate metabolite abundance with treatment use.
Scaled metabolite abundance, treatment use, and patient
ID were set as the response variable, predictor variable
(fixed effect), and random effect, respectively. The use of
the following treatments was assessed individually:
methotrexate, prednisone, non-methotrexate
¢sDMARDs,  TNFi-bDMARDs, and  non-TNFi-
bDMARDs (names of individual drugs in each treatment
group are provided in the footnote of Table 1). P-values
were retrieved from the corresponding regression coeffi-
cient of the predictor variable (i.e., use or non-use), and
a significance of P < 0.05 was reported as statistically
significant.

Identification of differentially abundant metabolites
between the two CRP groups

Metabolites that are significantly associated with disease
activity groups and DAS28-CRP scores were further in-
vestigated to find those associated with patient groups
delineated by CRP levels. First, all samples were divided
into two groups as follows: “high-CRP” (CRP > 3.0 mg/
L, n = 52) and “low-CRP” (CRP < 3.0mg/L, n = 76).
Next, a marginal, mixed-effects linear regression model
was used to define the abundance of a metabolite based
upon the following fixed effects: CRP group, sex, age,
smoking history, and treatment with prednisone, metho-
trexate, non-methotrexate ¢sDMARD:s, TNEFi-
bDMARDs, or non-TNFi-bDMARDs. Additionally, pa-
tient ID was treated as a random effect. Any covariates
whose association with metabolite abundance was statis-
tically significant (i.e., P-value of the corresponding re-
gression coefficient < 0.05) were then included in an
adjusted mixed model for metabolite abundance. Finally,
metabolites were considered as differentially abundant
between the two CRP groups if the association between
metabolite abundance and CRP group was still found to
be significant in the adjusted model (P < 0.05).

Results

Differentially abundant metabolites between higher and
lower disease activity groups

As shown in our analysis workflow (Fig. 1), we first
sought metabolites that were significantly different in
abundance between two major disease activity groups.
For this, we divided the 128 metabolomic profiles into
two major categories (“higher” vs. “lower”) based upon
the reported disease activity of the corresponding patient
at the time of sample collection (“Materials and
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methods” section). Using a mixed-effects logistic regres-
sion model (“Materials and methods” section), we identi-
fied 33 metabolites as differentially abundant between
the higher (n = 52) and lower (n = 76) DAS28-CRP
groups (Fig. 2). Most of these metabolites (31 of 33)
were observed to have significantly increased abun-
dances in lower disease activity, whereas the remaining
two (glucuronate and hypoxanthine) were found to be
significantly increased in higher disease activity. Notably,
of the 31 metabolites increased in lower disease activity,
seven metabolites (3-hydroxydecanoylcarnitine, dihomo-
linoleoylcarnitine (C20:2), eicosenoylcarnitine (C20:1),
linoleoylcarnitine (C18:3), linoleoylcarnitine (C18:2),
stearoylcarnitine (C18), palmitoylcarnitine (C16)) are a
part of acylcarnitine metabolism and represent a 3.6-fold
enrichment in metabolites involved in this particular
pathway (P = 1.9 x 107%, hypergeometric test). It is im-
portant to note that the differences seen are relatively
small in terms of fold change, with most of the
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metabolites varying by 1.1-1.3-fold. Despite these subtle
differences within RA patients of varying disease activ-
ities, we were still able to obtain statistically significant
signal even after considering and controlling for all
known potentially confounding factors (which often
leads to a reduction in statistical power), while adhering
to our cutoffs for statistical significance (P < 0.05).
N2-acetyl,N6-methyllysine (|log,(FC)| = 1.11, P = 1.26
x 1073 and trigonelline  (N'-methylnicotinate)
(|loga(FC)| = 0.74, P = 2.09 x 1072), which were both
found to have increased abundance in lower disease ac-
tivity, were the top two metabolites having the largest
fold changes between the two groups. Although the dir-
ect relevance of N2-acetyl,N6-methyllysine to RA is cur-
rently not well understood, N2-acetyl,N6-methyllysine is
part of the lysine metabolism pathway, which has been
reported to be associated with RA in the following stud-
ies: (i) according to Teitsma et al., serum metabolites as-
sociated with lysine degradation were observed to have a

| Increased abundance in
lower disease activity

N-acetyltyrosine

eicosenoylcarnitine (C20:1)

N-acetylglutamine
, IR \
bilirubin (E,E) .

N2-acptyl,N6-methyllysine ’

M biliverdin”"
= .
g trigonelline (N'-methylnicotinate)
Q. N-acetylasparagine "
2 N-acetyl-2-aminooctanoate
8" N2,N5-diacety|0rnithin</
e
1 N-acetylcitrulline
3-hydroxydecanoylcarnitine
retinal
04

N-acetyltryptophan
methionine
/ linoleoylcarnitine (C18:2)

®\ palmitoylcarnitine (C16)
glycerophosphoethanolamine

Increased abundance in
higher disease activity

dihomo-linoleoylcarnitine (C20:2)

6-bromotryptophan

* hypoxanthine
== glyceroglgosphorylcholine (GPC)
£ tryptophan
stearoylcarnitine (C18)
® glucuronate

serine

carnitine

lysine
3-amino-2-piperidone

gamma-glutamylmethionine
linoleoylcarnitine (C18:3)
N-acetylarginine
10-undecenoate (11:1n1)

logz(fold-change)

Fig. 2 Plasma metabolites differentiating between higher and lower disease activity groups in RA. A total of 2 and 31 metabolites were found to
be significantly increased in higher (DAS28-CRP > 3.2, n = 52) and lower (DAS28-CRP < 3.2, n = 76) disease activity groups, respectively. Each
point corresponds to a metabolite (686 total). Differentially abundant metabolites were found using a mixed-effects logistic regression model on
the discovery cohort (128 samples), for which age and sex were adjusted. Metabolites with a P-value < 0.05 (based upon the corresponding
coefficient of the regression model) were considered as significantly different between the groups. P-values and fold changes for all metabolites
are listed in Additional file 6. Metabolites in bold have been previously described in the literature for their associations with RA
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higher concentration in early RA patients who achieved
sustained drug-free remission (after tocilizumab- or
methotrexate-based treatment) compared to those who
never achieved a drug-free status [24]; (ii) Yang et al. re-
ported that metabolic products of lysine degradation
(carnitine and pipecolic acid) were significantly increased
in RA patients than in normal subjects [37].

In regard to trigonelline, which is a product of niacin
(vitamin B3) metabolism, this alkaloid has been sug-
gested to have therapeutic potential for diabetes and
central nervous system disease [38], and also reported to
demonstrate anti-inflammatory properties in mice [39].
In accordance with our results showing a decreased
abundance of trigonelline in higher disease activity, tri-
gonelline could be of interest in future studies on in-
flammatory responses in RA.

Biliverdin (|logy(FC)| = 0.48, P = 1.38 x 1072) and bili-
rubin (E,E) (|logy(FC)| = 0.43, P = 1.18 x 10?), which
are known metabolic products of the heme catabolic
pathway, were also observed to have significantly in-
creased abundances in lower disease activity. In particu-
lar, biliverdin has been shown to (i) inhibit the activation
of pro-inflammatory transcription factors, including
NFKB both in vitro and in vivo [40—44]; (ii) inhibit the
proliferation of primary T cells stimulated with anti-
CD3 and anti-CD28 monoclonal antibodies by inhibiting
NFAT/NF-kB activation in a mouse model of heart
transplantation [45]; and (iii) improve corneal inflamma-
tion mediated by heme-oxygenase 2 (HO-2) deficiency
in a transgenic mouse model [41]. Moreover, bilirubin,
which is derived from the reduction of biliverdin by bili-
verdin reductase, has been reported as a potential bio-
marker for RA in line with our findings. For example,
Peng et al. observed a decreased concentration of serum
bilirubin in RA patients compared to healthy controls, as
well as in RA patients with worsening disease activity
[46]. Additionally, Fischman et al. found that total biliru-
bin levels are inversely related to RA disease activity
even after adjusting for multiple confounders (e.g., age,
sex, race) and discussed the possibility of bilirubin (a
known anti-oxidant) having a physiological anti-
inflammatory effect [47]. This point is further elaborated
upon by Jangi et al. [48], who have described in detail
the immunosuppressive properties of unconjugated bili-
rubin in RA and other inflammatory disorders. The full
list of differentially abundant metabolites and their asso-
ciated pathways is shown in Additional file 6.

Metabolic feature selection improves DAS28-CRP
prediction accuracy

Having uncovered metabolites demonstrating altered
abundance between two major disease activity groups,
we next asked whether quantitative disease activity can
be predicted with plasma metabolomes. As untargeted
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metabolomic profiling can yield a considerable amount
of noise and random fluctuations in observed signals
[49], it is necessary to first select informative metabolic
features that reliably capture relevant aspects of the
phenotype of interest [50]. For this, we used mixed-
effects linear regression models to select metabolites sig-
nificantly associated with DAS28-CRP. Afterwards, the
abundances of the selected metabolic features were in-
corporated into a generalized linear model (GLM) to
predict DAS28-CRP. For comparison purposes, a GLM
was constructed without metabolic feature selection and
thereby taking into consideration all features of a meta-
bolomic profile. Details regarding GLM construction
and performance evaluation are provided in the “Mate-
rials and methods” section.

When applying a modified leave-one-out cross-
validation technique to the training group samples (n =
128), we found that the GLM incorporating metabolites
that were significantly associated with DAS28-CRP out-
performed the model without feature selection (ie.,
using all metabolites). As shown in Fig. 3, the distribu-
tion of absolute errors between the observed and pre-
dicted DAS28-CRP scores was smaller (with respect to
the cumulative area under the error curve) for the GLM
with feature selection than that without feature selection.
To this point, the prediction MAE (+ SD) of the GLM
with and without feature selection was 1.51 (+1.89) and
2.02 (+2.52), respectively.

Having confirmed that feature selection can lead to a
more accurate prediction model in cross-validation, we
applied the same scheme to all metabolome samples of
the discovery cohort to obtain a final set of metabolites
associated with DAS28-CRP (P < 0.05). After adjusting
for potential confounding factors (“Materials and
methods” section), this resulted in a collection of 51
plasma metabolites (Table 2). These metabolites were
used to construct a final GLM, whose predictive accur-
acy was tested on an independent validation cohort (n =
12) of plasma metabolomic profiles from twelve RA pa-
tients (importantly, this additional cohort was not drawn
from the same population distribution from which the
features were derived). On this previously unseen cohort,
the GLM constructed with only the 51 selected metabo-
lites performed considerably better than the model with-
out the feature selection scheme by over twofold
(Fig. 4A); the prediction MAE of the GLM with and
without feature selection was 0.97 (+0.47) and 2.01 (*
2.18), respectively. Likewise, when the actual and pre-
dicted DAS28-CRPs were plotted together for both
GLMs (Fig. 4B), we found that the model with the selec-
tion scheme performed more favorably. More specific-
ally, a stronger correlation between the actual and
predicted disease activity scores was observed in the
model with feature selection (Spearman’s p = 0.69, P =
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Absolute Error
(Ipredicted — observed DAS28-CRPI)
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Ranked Order of Training Samples (n = 128)

Fig. 3 Evaluation of DAS28-CRP predictive performance in cross-validation. A modified leave-one-out cross-validation approach was used on the
samples of the training group (128 samples) to test the performance of a generalized linear model (GLM) in predicting DAS28-CRP scores from
metabolite abundances. Distributions of absolute errors from models with and without a feature selection scheme were compared to identify the
more robust model. The GLM with the feature selection scheme performed better (MAE + SD: 1.51 + 1.89) than the model without feature

80 100 120

1.40 x 1072, 95% CI: [0.18, 0.90]) compared to the model
without (Spearman’s p = 0.18, P = 5.72 x 1072, 95% CI:
[-0.44, 0.68]).

Commonly identified metabolites from two different
analytic approaches

To summarize the findings above, we found that, from
the 686 total detectable metabolites in a metabolomic
profile, 33 (4.8%) were differentially abundant between
higher and lower disease activity, and 51 (7.4%) were sig-
nificantly associated with DAS28-CRP (Fig. 5). These
separate findings amounted to a total of 67 unique me-
tabolites, among which 40 were found to have no associ-
ation with the use of prednisone, methotrexate, other
non-methotrexate c¢csDMARDs, TNFi-bDMARDs, or
non-TNFi-bDMARDs (“Materials and methods” sec-
tion). Notably, eight metabolites (6-bromotryptophan,
bilirubin (E,E), biliverdin, glucuronate, N-acetyltrypto-
phan, N-acetyltyrosine, serine, and trigonelline) were not
only consistently detected across both analytic ap-
proaches, but also found to have no association with any
treatment use; these results strongly suggest key meta-
bolic pathways and modules potentially contributing to,
or serving as indicators of, RA pathogenesis independent
of confounding treatment effects. Consistent with this
idea, additional studies into the metabolites found in this

study (the majority of which have yet to be linked to
RA) may be able to provide new insight into the per-
turbed physiological metabolic processes—which are
then in turn reflected in blood—underlying disease pro-
gression in RA.

Metabolites associated with CRP patient groups

Elevated levels of C-reactive protein (CRP) in the blood
are well known to often indicate increased inflammatory
conditions, which may be caused by a wide variety of
acute (e.g., infections) and chronic disorders (e.g.,
rheumatoid arthritis, inflammatory bowel disease). In
RA patients, CRP levels have been observed to increase
after acute mental stress tasks [51] and also to be linked
to risk of cardiovascular disease [52]. Furthermore, sev-
eral serum metabolites were found to reflect inflamma-
tory activity in patients with early arthritis [53].

We further investigated the aforementioned 67 plasma
metabolites to see whether any were differentially abun-
dant between the two CRP patient groups, i.e., “high-
CRP” (CRP > 3.0 mg/L, n = 52) and “low-CRP” (CRP <
3.0mg/L, n = 76) (“Materials and methods” section).
While controlling for potential confounding variables,
we identified eight total metabolites that were signifi-
cantly associated with CRP patient group. More specific-
allyy, the  abundances of  mannose, beta-
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Metabolite name Super-pathway®  Sub-pathway® HMDB IDP  Regression P-
coefficient¥ value®
3-Hydroxystearate Lipid Fatty acid, monohydroxy N/A 0418 0.002
Phenol sulfate Amino acid Tyrosine metabolism HMDB60015  —0.265 0.003
Trimethylamine N-oxide Lipid Phospholipid metabolism HMDB00925 0485 0.004
Bilirubin (E,E) Cofactors and Hemoglobin and porphyrin metabolism N/A -0612 0.007
vitamins
Serine Amino acid Glycine, serine, and threonine metabolism HMDB00187 —1.594 0.010
Dimethylguanidino valeric acid Amino acid Urea cycle; arginine and proline metabolism N/A 0.325 001
(DMGV)
N-acetyltryptophan Amino acid Tryptophan metabolism HMDB13713 —0.918 0012
Glycoursodeoxycholate Lipid Secondary bile acid metabolism HMDB00708 0.051 0.012
N-acetylneuraminate Carbohydrate Aminosugar metabolism HMDB00230 0470 0.013
Dihomo-linoleoylcarnitine (C20:2)  Lipid Fatty acid metabolism (acyl camitine, N/A —-0.745 0.013
polyunsaturated)
N-acetyltyrosine Amino acid Tyrosine metabolism HMDB00866 —0.713 0014
Branched chain 140 dicarboxylic  Lipid Fatty acid, dicarboxylate N/A —-0.201 0014
acid
1-Carboxyethylvaline Amino acid Leucine, isoleucine, and valine metabolism N/A 0408 0.015
(14 or 15)-methylpalmitate (@17:0  Lipid Fatty acid, branched N/A 0227 0.017
or i17:0)
Isoursodeoxycholate Lipid Secondary bile acid metabolism HMDB00686 0.059 0018
Glucuronate Carbohydrate Aminosugar metabolism HMDB00127 0.396 0.019
Glucose Carbohydrate Glycolysis, gluconeogenesis, and pyruvate HMDB00122 1.107 0.019
metabolism
Linoleoylcarnitine (C18:3) Lipid Fatty acid metabolism (acyl carnitine, N/A -0.534 0.020
polyunsaturated)
1-Methylhistidine Amino acid Histidine metabolism HMDB00001 0.580 0.020
Trigonelline (N-methylnicotinate) ~ Cofactors and Nicotinate and nicotinamide metabolism HMDBO00875 —-0.227 0.020
vitamins
Palmitoyl ethanolamide Lipid Endocannabinoid HMDB02100 0.067 0.020
Hypoxanthine Nucleotide Purine metabolism, (hypo)xanthine/inosine HMDBO00157 0482 0.022
containing
Biliverdin Cofactors and Hemoglobin and porphyrin metabolism HMDB01008 —0.436 0.022
vitamins
Linoleoylcarnitine (C18:2) Lipid Fatty acid metabolism (acyl carnitine, HMDB06469 —0.814 0.023
polyunsaturated)
3-Methylhistidine Amino acid Histidine metabolism HMDB00479 0.140 0.025
N-acetylarginine Amino acid Urea cycle; arginine and proline metabolism ~ HMDB04620 —0.755 0.026
4-Guanidinobutanoate Amino acid Guanidino and acetamido metabolism HMDB03464 0.347 0.026
1-Carboxyethylisoleucine Amino acid Leucine, isoleucine, and valine metabolism N/A 0307 0.026
Cysteinylglycine disulfide Amino acid Glutathione metabolism HMDB00709 1.562 0.027
Guanidinoacetate Amino acid Creatine metabolism HMDB00128 —1.125 0.027
N2-acetyl,N6-methyllysine Amino acid Lysine metabolism N/A -0.213 0.028
Lysine Amino acid Lysine metabolism HMDB00182 —1.395 0.031
1,6-Anhydroglucose Xenobiotics Food component/plant HMDB00640 0.097 0.032
Pyrraline Xenobiotics Food component/plant HMDB33143 0.190 0.032
Mannose Carbohydrate Fructose, mannose, and galactose metabolism  HMDB00169 0.633 0.032
Ectoine Xenobiotics Chemical N/A 0.123 0.036
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Metabolite name Super-pathway®  Sub-pathway® HMDB IDP  Regression P-
coefficient¥ value®
6-Bromotryptophan Amino acid Tryptophan metabolism N/A —0.758 0.037
1-Linoleoyl-GPA (18:2) Lipid Lysophospholipid HMDB07856 —0.371 0.039
Eicosenoylcarnitine (C20:1) Lipid Fatty acid metabolism (acyl carnitine, N/A —0.557 0.039
monounsaturated)
Erucate (22:1n9) Lipid Long-chain monounsaturated fatty acid HMDB02068 0.346 0.040
Bilirubin Cofactors and Hemoglobin and porphyrin metabolism HMDB00054 —0.432 0.042
vitamins

Stearoyl ethanolamide Lipid Endocannabinoid HMDB13078 0.070 0.043
3-Phenylpropionate Xenobiotics Benzoate metabolism HMDB00764 —-0.178 0.043
(hydrocinnamate)

Beta-hydroxyisovalerate Amino acid Leucine, isoleucine, and valine metabolism HMDB00754 0.723 0.045
Myo-inositol Lipid Inositol metabolism HMDB00211  0.944 0.045
Gulonate Cofactors and Ascorbate and aldarate metabolism HMDB03290 0.575 0.047

vitamins
Gluconate Xenobiotics Food component/plant HMDBO00625 0.539 0.047
Tryptophan Amino acid Tryptophan metabolism HMDB00929 —1.139 0.048
1-Carboxyethylleucine Amino acid Leucine, isoleucine, and valine metabolism N/A 0350 0.048
Alpha-ketobutyrate Amino acid Methionine, cysteine, SAM, and taurine HMDB00005 0.268 0.049
metabolism
Lanthionine Amino acid Methionine, cysteine, SAM, and taurine N/A —0.229 0.049

metabolism

N/A not available

“Super-pathways and sub-pathways were defined by Metabolon’s Discovery HD4™ platform

PMetabolite IDs provided by the Human Metabolome Database (HMDB)

YCoefficients of the predictor variables (metabolites) in the mixed-effects linear regression model from the discovery cohort (n = 128). Sign and magnitude of the
coefficient indicate direction and strength of the correlation (between the metabolite and DAS28-CRP), respectively

8p-values were retrieved from the corresponding regression coefficients
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Fig. 4 GLM with feature selection provides improved DAS28-CRP prediction accuracy in an independent validation group (12 samples). A
Performance of GLMs in predicting quantitative disease activity was evaluated on samples of an independent validation group. Distributions of
absolute errors from models with and without a feature selection scheme were compared to identify the more robust model. B Selection of
metabolic features prior to model training resulted in higher predictive performance, as evidenced by the stronger correlation between observed
and predicted DAS28-CRPs. Three samples predicted to have negative DAS28-CRP values are omitted from the scatter plot. The dashed violet line
indicates "y = x," i.e, an exact match between the observed and predicted values. 95% confidence interval for p with feature selection [0.18, 0.90];
without feature selection [-0.44, 0.68]
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Fig. 5 Venn diagram of all plasma metabolites identified through the multi-approach discovery strategy. A total of 67 unique metabolites were
identified, among which 40 were found to have no association with the use of treatment. Notably, eight metabolites (6-bromotryptophan,
bilirubin (EE), biliverdin, glucuronate, N-acetyltryptophan, N-acetyltyrosine, serine, and trigonelline) in bold were not only consistently detected
across both analytic approaches, but also found to have no association with any treatment use. Colored circles indicate metabolites whose
abundances associate with treatment use. Metabolites with red triangles were found to have increasing abundances with worsening disease
activity, whereas metabolites with blue triangles were found to have decreasing abundances with worsening disease activity

hydroxyisovalerate, (14 or 15)-methylpalmitate (a17:0 or
i17:0), erucate (22:1n9), 10-undecenoate (11:1nl), N-
acetylcitrulline were higher in high-CRP, while those of
serine and linoleoylcarnitine (C18:3) were lower in high-
CRP (Fig. 6). Application of these plasma metabolites,
which were found to be connected to both RA disease
activity and circulating CRP levels, may lead to the de-
velopment of new clinical laboratory tests to further en-
able precision medicine for RA patients.

Plasma metabolites associate with clinical improvement
in RA

Based upon the European League Against Rheumatism
(EULAR) response criteria for DAS28-CRP [54], we
found that sixteen of the 64 patients in the discovery co-
hort showed moderate or good improvement in disease
activity from visit 1 to visit 2, while the remaining 48 pa-
tients did not show clinical improvement at the time of
their second visit. This discovery provided an entry point
for the following analysis: For each of these two patient
groups, i.e., “improved” (n = 16) and “non-improved” (n
= 48) patients, we aimed to identify metabolites whose
abundances significantly changed from visit 1 to visit 2,
while controlling for the same confounding factors

(mixed-effects regression model, P < 0.05). As a result,
we identified eleven metabolites whose abundances sig-
nificantly changed in the improved patient group (Add-
itional file 7), while nineteen metabolites showed
significant changes in the non-improved patient
group (Additional file 8). The following three metab-
olites, which were discovered in our previous ana-
lyses on the 128 plasma metabolome samples of the
discovery cohort, were detected once again: erucate
(22:1n9), a metabolite identified to be associated
with both the DAS28-CRP and CRP patient groups,
was identified to be significantly different between
visit 1 and visit 2 in patients who did not show clin-
ical improvement (non-improved); 3-amino-2-piperi-
done, a metabolite identified to be differentially
abundant between higher and lower disease activities
in our study, was identified to be significantly differ-
ent between visit 1 and visit 2 in patients who
showed clinical improvement (improved); and
gamma-glutamylmethionine, a metabolite identified
to be differentially abundant between higher and
lower disease activities, was identified to be signifi-
cantly different between visit 1 and visit 2 in the
non-improved group. These results allow us to
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Fig. 6 Metabolites differentially abundant between the two CRP patient groups. Among the 67 total metabolites identified through our multi-
approach analysis on the discovery cohort (n = 128), eight metabolites were identified to have significant associations with the CRP group while
controlling for confounding variables (regression coefficient for CRP, P < 0.05). A Metabolites with higher abundances in the high-CRP group:
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Metabolites with higher abundances in the low-CRP group: serine and linoleoylcarnitine (C18:3)

expand our future direction to investigate metabo-
lites associated with clinical improvement in patients
with RA.

Discussion

Dysfunctions in cellular and tissue metabolism are in-
volved in a broad range of autoimmune disorders [55—
58], including RA [59-61]. These metabolic implications
highlight the importance of investigating which bio-
chemical functions and metabolic states are altered dur-
ing the onset and progression of the disease. To this
end, metabolomics platforms (and the accompanying
wealth of data) can present unique opportunities for dis-
covering novel disease “molecular signatures” [62],
which can be interpreted through the lens of annotated
biochemical relationships. Moreover, high-throughput
profiling can enable the identification of circulating pro-
inflammatory (disease-triggering) and anti-inflammatory
(disease-protective) metabolites in RA, as elaborated
upon by Coras et al. [63]; such discoveries may facilitate
the design of either dietary or gut microbiome-based
intervention strategies to improve wellness or alter the
course of disease for RA patients. In this study, by

performing a global metabolomic profiling analysis on
128 plasma samples obtained from 64 patients with RA,
we identified biochemical signatures associated with, and
predictive of, disease activity. Mainly, through a combin-
ation of statistical approaches for metabolic signature
discovery, we identified several metabolites that (i) differ
significantly between the lower and higher disease activ-
ity groups and (ii) significantly associate with DAS28-
CRP. Of note, our study is the first to leverage biochem-
ical features from a plasma metabolomic profile to pre-
dict quantitative disease activity.

Interestingly, we identified eight metabolites (6-bro-
motryptophan, bilirubin (E,E), biliverdin, glucuronate, N-
acetyltryptophan, N-acetyltyrosine, serine, and trigonel-
line) that were commonly found across different statis-
tical approaches, possibly capturing representative
metabolite signals of RA progression. We discussed
above the reported roles of bilirubin and biliverdin in
RA. Moreover, these two metabolites were previously re-
ported for their cytoprotective and anti-inflammatory ef-
fects [64—68] and even suggested as an “RA protective
factor” by Fischman et al. [47]. Interestingly, high con-
centrations of bilirubin and biliverdin were reported in
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other inflammatory disorders, such as atherosclerotic
diseases [69] and autoimmune encephalitis [67]. In re-
gard to the other six metabolites, clear and definitive
connections with RA have not yet been established.
However, if our results on bilirubin and biliverdin were
to serve as benchmarks for reliably identifying plasma
metabolites important to RA disease activity, then these
remaining metabolites may be deemed as leading candi-
dates for future investigations.

Glucuronate was found to show elevated abundance in
higher disease activity than in lower disease activity. This
glucose derivative is involved in the detoxification of xe-
nobiotics via glucuronidation in the mammalian liver.
Interestingly, this process can be reversed by gut
bacteria-harboring B-D-glucuronidases [70] and thereby
releasing (potentially toxic) exogenous compounds into
the gut lumen and subsequently into circulation [71, 72].
In that respect, examining a possible role involving dys-
biosis in the gut microbiota—combined with metabolo-
mic approaches to infer relationships between gut
microbes and blood metabolites in RA, as shown by
Chen et al. [73]—may help elucidate a microbial-based
mechanism explaining the observed alterations in
plasma glucuronate.

Serine was seen to decrease with worsening disease ac-
tivity. In line with our results, albeit in an RA mouse
model with collagen-induced arthritis (CIA), plasma
levels of serine and other free amino acids were found to
have significantly decreased in the CIA group compared
to control mice [74]. In another study wherein synovial
fluid of RA patients was examined for citrullinated pro-
teins (which is widely known to result in a rise in anti-
citrullinated protein antibodies in RA), Tilvawala et al.
found increased citrullination in a wide array of serine
protease inhibitors (serpins) and serine proteases [75]; in
the same study, the investigators demonstrated in vitro
that citrullinating serine protease inhibitors nearly abol-
ishes their inhibitory activity towards their target prote-
ases. Although we have yet to uncover whether a
decrease in plasma serine levels (with worsening disease
activity) is linked to the citrullination of serine proteases
in synovial fluid, we speculate that changes in serine
may reflect dysregulated protein degradation during sys-
temic inflammatory activity and joint destruction in RA.

Of note, the metabolites reported in our study display
considerable differences with those previously found to
be associated with RA. For example, Chu et al. reported
multiple lists of circulating plasma metabolites relevant
to RA risk in the NHS (Nurses’ Health Study)/NHSII
[76]. Among these lists, our study found only one (ie.,
N-acetyltryptophan) out of seven metabolites associated
with the incidence of RA, and one (ie, 4-
guanidinobutanoate) out of eight metabolites associated
with the incidence of RA specifically within 5years of
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diagnosis. Likewise, our study identified one metabolite
(i.e., glucose) among eleven previously reported to differ-
entiate early RA patients from healthy controls [53].
Such discrepancies could stem from differences in a
range of factors between these other studies and ours,
such as clinical and demographic characteristics, sample
size, disease duration, and analytical approach (e.g.,
metabolomic instruments, statistical tests). The results
of our pilot study herein motivate future investigations—
composed of larger sample sizes and of a wider variety
of cohort characteristics—that may eventually provide
findings more consistently aligned with previous work
by others.

We note a few limitations of this study: First, we ac-
knowledge that our study includes a relatively small
number of samples within each disease activity group of
the discovery cohort and the validation cohort. Never-
theless, we were able to detect statistically significant
metabolites in all analytical strategies, demonstrating
that our data provides reasonably sufficient statistical
power. Certainly, a much larger cohort would have been
ideal; however, this is a small pilot study on our stored
plasma samples, and obtaining an additional cohort is
outside of its scope. Encouragingly, despite the low sam-
ple size of the validation cohort, we were able to suc-
cessfully show that feature selection is a necessary step
in the model-training process, and we expect this finding
to translate well to larger cohorts in our future studies.
Nevertheless, in order to more meticulously examine the
role of blood metabolites in RA, future investigations
will warrant a higher number of samples and more de-
tailed subject characteristics. Second, to define RA dis-
ease activity, we solely used the DAS28-CRP scoring
system, which is dependent upon acute-phase responses
that may not accurately reflect patients who have an
inflammation-free state [24]. Our future plans include
performing our analytical pipeline with other RA disease
activity metrics (e.g., clinical disease activity index
(CDAI), simple disease activity index (SDAI)) to test the
robustness of our findings. Third, all of our multivariate
analyses followed adjustment for patient age and sex
only. Other potential confounders that may affect the
concentration of blood metabolites, such as diet, exercise
habits, lifestyle factors, time of the day of sample collec-
tion, and gut microbiome, were not considered as pre-
dictor variables in our analyses. Fourth, comorbidity can
certainly be a significant confounding factor. Alterna-
tively, comorbidities could theoretically be contributors
or mediators to inflammatory disease activity in patients
with RA. At this stage, it would have been premature to
adjust statistically for the effects of particular comorbidi-
ties or for the presence of multi-morbidity (i.e., multiple
chronic conditions) before carefully investigating their
potential interaction with plasma metabolites and RA
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disease activity. This may lead to “over-adjustment” and
falsely concluding that certain metabolites are not sig-
nificant when they may, in fact, be very important. Fu-
ture studies will be necessary to explore the potential
interactions between comorbidities, RA disease activity,
and plasma metabolite levels in RA. Last, despite the
similarities in our findings with previous investigations
(as noted above), many of our results are reported for
the first time and remain to be validated by others. Pos-
sible causes of discrepancies with the work of others in-
clude the comparatively small number of samples in this
pilot study, technical and biological sources of random
noise, the uniqueness of our recruited patient cohort,
variabilities in detection protocols and instrument sensi-
tivity, and the use of alternate statistical techniques and
potential over-fitting. Future efforts, by us and others,
are likely to elucidate truly robust signals and collectively
strengthen the confidence in our novel findings.

Despite the aforementioned limitations, our study estab-
lishes the far-reaching utility of using cutting-edge techno-
logical and analytical approaches for plasma metabolomic
profiling and justifies analogous investigations at larger
scales. The identified metabolites could be a reflection of
the perturbed metabolic processes concurrent with wors-
ening disease activity, and our findings will inspire future
studies into how inflammation and pain in RA are coupled
to physiological metabolism. Moreover, our identified sets
of signature metabolites offer a promising glimpse into
the biomolecular marker panels for diagnosing disease ac-
tivity of RA patients solely through blood (thereby com-
plementing current diagnostic approaches), with the
overall aim to make such assessments faster, cheaper, and
less invasive. In turn, studies such as ours are expected to
contribute towards fully realizing the potential of virtual
and digital healthcare by foregoing the need for patients
to physically arrive at the clinic to meet their primary care
provider in person.

As the gut microbiome has been recognized to be im-
plicated in RA [73, 77-79]—possibly through complex
mechanisms underlying microbe-microbe and host-
microbe biochemical cross-talk [80]—integrated profil-
ing of both stool metagenome and blood metabolome
would provide an in-depth, comprehensive view of func-
tional dysbiosis during RA onset and progression. Inter-
estingly, a recent study showed that blood metabolites
can be predictive of gut microbiome alpha-diversity [81].
Such investigations into integrating across multiple data
types of the same phenotype can help to amplify the pri-
mary biological signal of interest relative to noise, as well
as provide actionable insights. In conclusion, the results
reported herein are poised to eventually improve disease
management and outcomes of patients with RA and
other rheumatic diseases, as well as to provide novel
means of monitoring health and wellness [82].
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Conclusions

This is the first study that uses global metabolomic pro-
filing on blood to demonstrate the predictive value of
circulating biochemicals in estimating quantitative dis-
ease activity in RA. We uncovered RA plasma metabo-
lites that stratify patients of the “higher” and “lower”
disease activity groups, significantly associate with
DAS28-CRP, and differentiate between the two groups
of patients divided by their blood C-reactive protein
(CRP) levels. In all, our study supports the key role of
high-throughput metabolomic technologies in identify-
ing blood-borne biochemical signatures and metabolic
pathways reflective of RA progression and systemic
inflammation.
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