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Abstract 

Background:  Few studies on rheumatoid arthritis (RA) have generated machine learning models to predict biologic 
disease-modifying antirheumatic drugs (bDMARDs) responses; however, these studies included insufficient analysis 
on important features. Moreover, machine learning is yet to be used to predict bDMARD responses in ankylosing 
spondylitis (AS). Thus, in this study, machine learning was used to predict such responses in RA and AS patients.

Methods:  Data were retrieved from the Korean College of Rheumatology Biologics therapy (KOBIO) registry. The 
number of RA and AS patients in the training dataset were 625 and 611, respectively. We prepared independent test 
datasets that did not participate in any process of generating machine learning models. Baseline clinical characteris‑
tics were used as input features. Responders were defined as those who met the ACR 20% improvement response cri‑
teria (ACR20) and ASAS 20% improvement response criteria (ASAS20) in RA and AS, respectively, at the first follow-up. 
Multiple machine learning methods, including random forest (RF-method), were used to generate models to predict 
bDMARD responses, and we compared them with the logistic regression model.

Results:  The RF-method model had superior prediction performance to logistic regression model (accuracy: 0.726 
[95% confidence interval (CI): 0.725–0.730] vs. 0.689 [0.606–0.717], area under curve (AUC) of the receiver operating 
characteristic curve (ROC) 0.638 [0.576–0.658] vs. 0.565 [0.493–0.605], F1 score 0.841 [0.837–0.843] vs. 0.803 [0.732–
0.828], AUC of the precision-recall curve 0.808 [0.763–0.829] vs. 0.754 [0.714–0.789]) with independent test datasets in 
patients with RA. However, machine learning and logistic regression exhibited similar prediction performance in AS 
patients. Furthermore, the patient self-reporting scales, which are patient global assessment of disease activity (PtGA) 
in RA and Bath Ankylosing Spondylitis Functional Index (BASFI) in AS, were revealed as the most important features in 
both diseases.

Conclusions:  RF-method exhibited superior prediction performance for responses of bDMARDs to a conventional 
statistical method, i.e., logistic regression, in RA patients. In contrast, despite the comparable size of the dataset, 
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Background
Biologic disease-modifying antirheumatic drugs 
(bDMARDs) play a pivotal role in the treatment of vari-
ous rheumatologic diseases, such as rheumatoid arthritis 
(RA) and ankylosing spondylitis (AS), particularly those 
resistant to conventional synthetic disease-modifying 
rheumatic drugs (csDMARDs). However, approximately 
30% and 20% of RA [1, 2] and AS [3–5] patients, respec-
tively, do not respond well to their initial bDMARD ther-
apy. A few months are required to determine the efficacy 
of the medications. Non-responders could experience 
high drug costs, unimproved disease conditions, and side 
effects during this period [6–9]. Therefore, methods to 
predict the responses prior to the start of bDMARDs is 
garnering substantial interest.

Several studies simply identified and compared clini-
cal factors, such as sex, age, disease duration, and dis-
ease activity, in both diseases to influence the treatment 
responses of bDMARDs [10, 11], rather than making a 
predictive model. Because the relationship between clini-
cal variables and phenotypes is complex, machine learn-
ing methods outperform conventional statistical models 
in predicting clinical outcomes in various circumstances 
[12–15]. Recently, the use of machine learning to pre-
dict anti-tumor necrosis factor (TNFi) drug responses in 
RA patients has been published [16], based on the larg-
est data obtained among machine learning studies con-
ducted to date in RA. However, the study did not include 
much about feature importance analysis. In the case of 
AS, although machine learning to predict early TNFi 
users was conducted previously [17], no machine learn-
ing model has been developed to predict the responses of 
bDMARDs.

This study aims to examine whether machine learning 
can better predict the treatment responses of bDMARDs 
than conventional statistical methods. In addition, this 
study aims to identify important clinical factors that 
affect the treatment responses of bDMARDs through 
machine learning. Machine learning models including 
random forest (RF-method), extreme gradient boosting 
(XGBoost), artificial neural network (ANN), and sup-
port vector machine (SVM), are presented to predict 
bDMARD responses in patients with RA and AS, respec-
tively. The prediction performances between machine 
learning methods, as well as with a conventional statisti-
cal method, which is logistic regression, were compared. 
Next, feature importance analysis was performed with 

the generated machine learning models to delineate the 
factors that are important in training models.

Methods
Data acquisition and participants
The data for this study were retrieved from the Korean 
College of Rheumatology Biologics therapy (KOBIO) reg-
istry [18], a prospective nationwide biologic therapy reg-
istry for RA, AS, and psoriatic arthritis, which includes 
45 hospitals in South Korea. This registry enrolled 
patients who started bDMARDs with baseline clinical 
data and followed up annually. Our target cohort popula-
tion included patients (1) with RA or AS who enrolled in 
the registry between December 2012 and February 2019, 
(2) who started bDMARDs for the first time, and (3) who 
were followed up for 1 year or more. All patients met the 
1987 American College of Rheumatology (ACR) criteria 
or the 2010 ACR/European League Against Rheumatism 
(EULAR) criteria for RA patients, or the modified New 
York criteria for AS or the assessment of spondyloarthri-
tis international society (ASAS) axial spondyloarthritis 
criteria for AS patients. Only bDMARD-naïve patients 
were included to maintain the homogeneity of the pop-
ulation. Patients who did not have baseline clinical data 
or could not check the 1-year treatment response were 
excluded.

The data were divided into training and independent 
test datasets by region of hospitals (Additional file 1: Text 
S1). Predictive models were generated using machine 
learning with only the training dataset. The independ-
ent test dataset did not participate in any training or 
internal validation of predictive models. It was only used 
for the final external validation of each trained model. 
Because every hospital had independent researchers and 
laboratory facilities and maintained individual clinical 
practices, we expected that dividing the test dataset by 
enrolled hospitals would serve similar to the independ-
ent cohort dataset. Table 1 lists the number of individuals 
included in each dataset.

Model design
Input features
The KOBIO registry collects data on demographics, 
comorbidities, disease activity, medication (bDMARDs, 
and concomitant or previous use of csDMARDs), image, 
extra-articular features, functional assessment, and labo-
ratory findings as baseline clinical characteristics. We 

machine learning did not outperform in AS patients. The most important features of both diseases, according to 
feature importance analysis were patient self-reporting scales.
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filtered input features that included only sparse informa-
tion as using too many input features results in overfit-
ting. The numbers of selected input features were 74 
and 75 in RA and AS, respectively (Additional file  3: 
Table S1).

Training prediction models
Using a clinical data matrix, we trained the prediction 
models to distinguish between bDMARD responders 
and non-responders. Patients who met the ACR 20% 
improvement response criteria (ACR20) [19] or ASAS 
20% improvement response criteria (ASAS20) [20] for 
RA or AS, respectively, were classified as responders. 
The remaining patients were classified as non-respond-
ers. ACR20 and ASAS20 have been frequently used as 
treatment response measures in clinical trials [21–23]. 
Because each input feature has a different scale, con-
tinuous features are normalized to a range of 0–1 to 
match the value of the categorical features, which were 
used directly. RF-method, XGBoost, ANN, and SVM 
were used to train prediction models to classify patients 
as responders or non-responders. In addition, a logis-
tic regression model was constructed as a representa-
tive of a conventional statistical method to compare 
machine learning models. RF-method [24], XGBoost 
[25], and ANN [26] have several hyperparameters that 
must be determined before training. However, there 
is no consensus on the hyperparameters that are suit-
able for predicting clinical prognosis. Therefore, multi-
ple machine-learning models were tested by varying the 
hyperparameters. The hyperparameters for RF-method 
include the maximum depth of a tree, total number of 
trees, minimum sample split, and minimum leaf samples. 
In the case of XGBoost, the hyperparameters include 
the maximum depth of a tree, learning rate, and gamma 
value. For the ANN, the hyperparameters include the 
number of hidden layers and nodes and the learning rate. 
The learning rate is the number of changes that newly 
acquired information undergoes while overriding old 
information, gamma refers to the minimum loss reduc-
tion required to make a further partition on a leaf node 
of the tree, the minimum sample split refers to the mini-
mum number of samples required to split an internal 
node, and the minimum leaf samples refer to the mini-
mum number of samples required to be at a leaf node. 

We chose hyperparameters with the best performance 
and those that performed better than logistic regression 
in all respects. Our training codes and generated predic-
tion models have been made publicly accessible (https://​
github.​com/​Seulk​eeLee​123/​KOBIO_​biolo​gics).

Performance evaluation
The prediction models were evaluated in three rounds 
of threefold cross-validation [27]. Because the respond-
ers and non-responders were unevenly distributed in the 
dataset, stratified cross-validation was used to divide the 
dataset. As mentioned earlier, only “training dataset” was 
used to generate prediction models. In each round, the 
training dataset was randomly divided into three equal 
sizes with stratified probability. A model was trained on 
two of these parts and scored on one remainder. This pro-
cess was repeated thrice. Three rounds of tests resulted 
in a total of nine scores, and the average was used as the 
estimated performance score of the model. Finally, the 
generated models were tested with a pre-divided “inde-
pendent test dataset” for external validation. The perfor-
mance was measured by the accuracy, area under curve 
(AUC) of a receiver operating characteristic curve (ROC) 
and precision-recall curve, and F1 score. In addition, we 
used bootstrapping to calculate the confidence interval of 
performances [28]. A total of 1000 bootstrap iterations 
were used by sampling with replacement. For a confi-
dence interval of 95%, the values at the 2.5 percentile 
and 97.5 percentile were selected as the lower and upper 
bounds, respectively.

Feature importance analysis
Machine learning methods provide feature importance 
analysis, which can reveal important clinical features 
to predict treatment responses. For RF-method and 
XGBoost, the Gini importance was used for the fea-
ture importance analysis. However, compared to other 
machine learning methods, identifying the importance 
of each feature in ANN is more difficult because of its 
“black box” characteristics. There are several methods 
for evaluating feature importance despite the limitations 
[29, 30]. We used the differential value of the prediction 
score in changing each input for feature importance. In 
previous studies, this method was called “risk backpropa-
gation” [30]. Furthermore, we performed analysis using 
clinical factors reported as important based on the fea-
ture importance analysis to evaluate whether additional 
clinical significance can be inferred from the results. The 
detailed methods for feature importance analysis are pre-
sented in the Text S1.

Table 1  Number of training and test datasets in patients with 
RA and AS

Training dataset Independent 
test dataset

RA 625 322

AS 611 296

https://github.com/SeulkeeLee123/KOBIO_biologics
https://github.com/SeulkeeLee123/KOBIO_biologics
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Prediction models of each bDMARDs
Separate prediction models were developed for patients 
who use specific bDMARDs to determine the differ-
ences in models and feature importance by varying the 
medications. The number of medication users less than 
50 were excluded from the individual analysis owing to 
their small size. Consequently, abatacept, adalimumab, 
etanercept, infliximab, and tocilizumab were chosen for 
RA; adalimumab, etanercept, golimumab, and infliximab 
were chosen for AS. An identical methodology was used 
to generate and evaluate the prediction models when 
using the entire data.

Statistical analysis
Python (ver. 3.8.6) and R (ver. 3.6.3) [31] were used 
for statistical analysis. All machine learning models 
were generated and evaluated using the Python code. 

Scikit-learn (ver. 0.24.1) [32] module was used for the RF-
method, SVM, and logistic regression models; xgboost 
(ver. 1.3.3) [25] was used for the XGBoost models. Ten-
sorflow (2.4.1) [33] was used for the ANN models.

Results
Demographic and characteristics of the patients
The number of RA and AS patients included in the 
training dataset were 625 and 611, respectively. The 
demographic and baseline clinical characteristics are 
summarized in Tables  2 and 3, respectively. The RA 
and AS patients were divided into responders and non-
responders, indicating those who achieved ACR20 and 
ASAS20 and those who did not, respectively. In the case 
of RA patients, responders exhibited a higher disease 
activity (swollen joint count [SJC] 7.00 vs. 5.87, p = 0.017; 
tender joint count [TJC] 8.78 vs. 7.68, p = 0.045; patient 

Table 2  Demographics and baseline clinical characteristics of the RA patients

Data are shown in mean (standard deviation) if not otherwise specified

SJC swollen joint count, TJC tender joint count, PtGA patient global assessment of disease activity, PhGA physician global assessment of disease activity, RAPID3 
routine assessment of patient index data 3, ESR erythrocyte sedimentation rate, CRP C-reactive protein, HTN hypertension, DM diabetes mellitus, CKD chronic kidney 
disease, anti-CCP anti-citrullinated protein

Baseline characteristics Overall n = 625 Responder n = 466 Non-responder n = 159 p-value

Sex (male, %) 103 (16.5) 80 (17.2) 23 (14.5) 0.503

Age at baseline (years) 54.04 (12.44) 54.13 (12.40) 53.78 (12.61) 0.757

Disease duration (years) 6.78 (7.19) 6.66 (7.20) 7.14 (7.17) 0.464

Height (cm) 159.41 (7.01) 159.50 (7.08) 159.16 (6.81) 0.606

Weight (kg) 57.30 (9.72) 57.08 (9.45) 57.93 (10.47) 0.341

SJC 6.71 (5.18) 7.00 (5.10) 5.87 (5.36) 0.017

TJC 8.50 (5.98) 8.78 (5.98) 7.68 (5.93) 0.045

PtGA 7.24 (1.78) 7.47 (1.69) 6.55 (1.87) <0.001

PhGA 6.56 (1.75) 6.69 (1.72) 6.18 (1.78) 0.001

RAPID3 15.54 (5.68) 16.10 (5.70) 13.89 (5.30) <0.001

ESR (mm/h) 46.63 (25.66) 46.38 (25.98) 47.36 (24.77) 0.678

CRP (mg/dL) 2.34 (3.16) 2.40 (3.00) 2.16 (3.59) 0.405

HTN (%) 167 (26.7) 126 (27.0) 41 (25.8) 0.838

DM (%) 61 (9.8) 36 (7.7) 25 (15.7) 0.005

CKD (%) 5 (0.8) 3 (0.6) 2 (1.3) 0.814

Rheumatoid factor positive (%) 551 (88.2) 410 (88.0) 141 (88.7) 0.926

Anti-CCP positive (%) 494 (79.0) 373 (80.0) 121 (76.1) 0.346

Methotrexate (%) 531 (85.0) 400 (85.8) 131 (82.4) 0.357

Hydroxychloroquine (%) 175 (28.0) 136 (29.2) 39 (24.5) 0.304

Sulfasalazine (%) 85 (13.6) 67 (14.4) 18 (11.3) 0.403

Leflunomide (%) 179 (28.6) 127 (27.3) 52 (32.7) 0.226

Abatacept (%) 68 (10.9) 49 (10.5) 19 (11.9) 0.723

Adalimumab (%) 168 (26.9) 121 (26.0) 47 (29.6) 0.436

Etanercept (%) 94 (15.0) 64 (13.7) 30 (18.9) 0.151

Golimumab (%) 26 (4.2) 18 (3.9) 8 (5.0) 0.684

Infliximab (%) 64 (10.2) 40 (8.6) 24 (15.1) 0.029

Tocilizumab (%) 194 (31.0) 165 (35.4) 29 (18.2) <0.001

Tofacitinib (%) 11 (1.8) 9 (1.9) 2 (1.3) 0.835
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global assessment of disease activity [PtGA] 7.47 vs. 6.55, 
p < 0.001; physician global assessment of disease activ-
ity [PhGA] 6.69 vs. 6.18, p = 0.001; routine assessment 
of patient index data 3 [RAPID3] score 16.10 vs. 13.89, p 
< 0.001), lower proportion of infliximab users (40 [8.6%] 
vs. 24 [15.1%], p = 0.029), and higher proportion of toci-
lizumab users (165 [35.4%] vs. 29 [18.2], p < 0.001) than 
non-responders. Meanwhile, in the case of AS patients, 
responders exhibited a higher disease activity (Bath 
Ankylosing Spondylitis Disease Activity Index [BASDAI] 
6.75 vs. 6.08, p < 0.001; BASFI 4.47 vs. 3.45, p < 0.001), 
including erythrocyte sedimentation rate (ESR, 42.46 
mm/h vs. 34.82 mm/h, p = 0.003) and C-reactive protein 
(CRP) level (2.77 mg/dL vs. 2.06 mg/dL, p = 0.007) than 
non-responders. In addition, responders were younger 

(37.88 years vs. 40.38 years, p = 0.026) and taller (169.95 
cm vs. 167.93 cm, p = 0.005).

Prediction model optimization
Prediction models that classified patients as respond-
ers or non-responders were trained using RF-method, 
XGBoost, ANN, SVM, and logistic regression (Fig.  1). 
The RF-method, XGBoost, and ANN models were sig-
nificantly different in terms of their hyperparameters. 
Thus, we trained them repeatedly to determine an appro-
priate hyperparameter set for the input dataset (Addi-
tional file  2: Figures  S1-6). Hyperparameters of better 
performing models than the logistic regression model 
were selected in terms of all four performance measures 
(accuracy, AUC of ROC curve, F1 score, and AUC of 

Table 3  Demographics and baseline clinical characteristics of the AS patients

Data are shown in mean (standard deviation) if not otherwise specified.

BASDAI Bath Ankylosing Spondylitis Disease Activity Index, BASFI Bath Ankylosing Spondylitis Functional Index, ESR erythrocyte sedimentation rate, CRP C-reactive 
protein, HTN hypertension, DM diabetes mellitus, CKD chronic kidney disease, HLA human leukocyte antigen, NSAIDs non-steroidal anti-inflammatory drugs

Baseline characteristics Overall n = 611 Responder n = 396 Non-responder n = 215 p-value

Sex (male, %) 456 (74.6) 301 (76.0) 155 (72.1) 0.334

Age at baseline (years) 38.76 (13.29) 37.88 (12.85) 40.38 (13.95) 0.026

Disease duration (years) 3.56 (5.23) 3.43 (4.99) 3.80 (5.63) 0.405

Height (cm) 169.24 (8.46) 169.95 (8.37) 167.93 (8.47) 0.005

Weight (kg) 67.36 (12.65) 67.93 (12.62) 66.30 (12.67) 0.129

Peripheral arthritis (%) 234 (38.3) 155 (39.1) 79 (36.7) 0.621

Enthesitis (%) 120 (19.6) 84 (21.2) 36 (16.7) 0.222

Uveitis (%) 118 (19.3) 72 (18.2) 46 (21.4) 0.393

Dactylitis (%) 15 (2.5) 10 (2.5) 5 (2.3) 1.000

Psoriasis (%) 16 (2.6) 8 (2.0) 8 (3.7) 0.321

Inflammatory bowel disease (%) 8 (1.3) 6 (1.5) 2 (0.9) 0.814

Smoking

  Smoker + ex-smoker 179 (45.2) 284 (46.5) 105 (48.8) 0.438

  Non-smoker 217 (54.8) 327 (53.5) 110 (51.2)

BASDAI 6.52 (1.70) 6.75 (1.61) 6.08 (1.77) <0.001

BASFI 4.11 (2.53) 4.47 (2.47) 3.45 (2.51) <0.001

ESR (mm/h) 39.77 (30.89) 42.46 (31.26) 34.82 (29.64) 0.003

CRP (mg/dL) 2.52 (3.12) 2.77 (3.32) 2.06 (2.64) 0.007

HTN (%) 96 (15.7) 48 (12.1) 48 (22.3) 0.001

DM (%) 18 (2.9) 11 (2.8) 7 (3.3) 0.934

CKD (%) 0 (0.0) 0 (0.0) 0 (0.0) NA

HLA-B27 positive (%) 543 (88.9) 358 (90.4) 185 (86.0) 0.133

NSAIDs use (%) 521 (85.3) 334 (84.3) 187 (87.0) 0.449

Methotrexate (%) 44 (7.2) 23 (5.8) 21 (9.8) 0.100

Sulfasalazine (%) 35 (5.7) 19 (4.8) 16 (7.4) 0.246

Adalimumab (%) 253 (41.4) 165 (41.7) 88 (40.9) 0.928

Etanercept (%) 74 (12.1) 47 (11.9) 27 (12.6) 0.905

Golimumab (%) 115 (18.8) 81 (20.5) 34 (15.8) 0.196

Infliximab (%) 169 (27.7) 103 (26.0) 66 (30.7) 0.253
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precision-recall curve). The chosen hyperparameter sets 
of each model are listed in Additional file 3: Table S2.

Performance of predicting bDMARDs responses
Performance of various models was compared in terms 
of the accuracy, AUC of the ROC and precision-recall 
curves, and F1 score. The prediction models were evalu-
ated in three rounds of three-fold cross-validation. In 
both disease cohorts, RF-method showed the best per-
formance among the various methods in almost all fields 
(Fig.  2). However, the differences were within the con-
fidence intervals calculated using bootstrap methods. 
Prediction models with RA patients exhibited better per-
formance in general. Although the different structures of 
the training dataset could affect the performance of the 
prediction methods, it is likely that the performance dif-
fers in reality because all four measures were better in RA 
patients.

Evaluation on independent test dataset
To validate the performance of the prediction model, we 
excluded data on specific hospitals from the processes to 
formulate prediction models and the excluded data were 
used as an independent test dataset. The performance 
of previously obtained prediction models was evaluated 
with data from an independent test dataset. In the case 
of RA patients, the prediction performances of the RF-
method and XGBoost models were higher than those 
of the logistic regression model (Fig.  3a). RF-method 
and XGBoost showed similar performances in all four 
performance measures; however, RF-method exhib-
ited more robust results with the bootstrap method. 
The RF-method model showed better prediction per-
formance than the logistic regression model, even con-
sidering the 95% confidence interval calculated using 
bootstrap methods (accuracy 0.726 [95% confidence 
interval (CI) 0.725–0.730] vs. 0.689 [0.606–0.717], AUC 
of the ROC 0.638 [0.576–0.658] vs. 0.565 [0.493–0.605], 

Fig. 1  Overview of the prediction model for responses of bDMARDs. The model uses data on baseline clinical characteristics, including 
comorbidities, disease activity, medication, image, extra-articular features, functional assessment, and laboratory findings, to classify the patient as a 
responder or non-responder
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F1 score 0.841 [0.837–0.843] vs. 0.803 [0.732–0.828], 
AUC of the precision-recall curve 0.808 [0.763–0.829] vs. 
0.754 [0.714–0.789]). The ANN and SVM did not show 
superior prediction performance. In contrast with RA 
patients, prediction performances between the machine 
learning methods and logistic regression in AS patients 
did not significantly differ (Fig. 3b).

Feature importance analysis
Feature importance analysis was implemented using the 
best-performing models of each RF-method, XGBoost, 
and ANN methods. Gini importance method was used 
for RF-method and XGBoost models, and risk back-
propagation method was used for ANN models to calcu-
late feature importance. The top three important input 
features of the RF-method model in RA patients were 
PtGA, RAPID3, and SJC (Fig.  4). Except for the ANN 
model in RA patients, the most important input feature 
was PtGA, which is a self-reported scale, rather than 
more objective features, such as laboratory results or 
physical examination. Among the three machine learn-
ing methods, ANN exhibited the worst prediction per-
formance. In the feature importance analysis, the ANN 

showed significantly different results from the other two 
methods. Considering the prediction performance of the 
ANN model, the feature importance results of the ANN 
model were regarded as unreliable compared to other 
methods. In the case of AS, the most important input 
feature of all three machine learning methods was BASFI, 
which is a self-reported functional assessment score for 
AS (Fig. 4), followed by BASDAI in the RF-method and 
XGBoost models. By combining self-reported scales pre-
dicted to be important, we attempted to analyze whether 
additional information could be found through a con-
ventional statistical method; however, the results were 
inconsistent (Text S1).

Prediction models of different bDMARDs
The training dataset was divided based on the type of 
bDMARD. RA patients were divided into abatacept, adal-
imumab, etanercept, infliximab, and tocilizumab users; 
AS patients were divided into adalimumab, etanercept, 
golimumab, and infliximab users. The performance of the 
RF-method and logistic regression models in RA patients 
did not differ from each other in all medication users 
(Additional file  2: Figure S7). The feature importance 

Fig. 2  Performance of models trained using various methods (RF-method, XGBoost, ANN, SVM, and logistic regression) with training dataset, in 
terms of accuracy, AUC of the ROC curve, F1 score, and AUC of the precision-recall curve. a RA patients. b AS patients. LR, logistic regression
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analysis results of the prediction models did not show 
consistent results for each medication cohort in the 
RA patients (Additional file 2: Figure S8). This could be 
because of the small size of the dataset of individual med-
ication users. The performance of the RF-method models 
in AS patients showed similar results (Additional file  2: 
Figure S9). However, the RF-method prediction model 
in adalimumab users in AS patients showed better per-
formance than the logistic regression model, particularly 
when the model was tested using an independent dataset, 
despite the borderline differences. Feature importance 
analysis of the RF-method model of adalimumab users in 
AS patients showed that the most important input fea-
ture was BASFI, followed by BASDAI (Additional file 2: 
Figure S10). This result was similar to that of the entire 

AS dataset. The number of patients in the adalimumab 
cohort with AS was 253, the largest among the individ-
ual medication datasets. The size of the training dataset 
could be the reason for the better performance of the 
prediction model in the adalimumab cohort. In general, 
we could not formulate a prediction model for individ-
ual medication use with reasonable performance in most 
cases, and the primary reason seemed to be the size of 
the cohort.

Discussion
Various machine learning models were presented to clas-
sify the treatment responses of bDMARDs in RA and 
AS patients. In RA patients, RF-method was the most 
suitable method to predict treatment responses more 

Fig. 3  Performances of models trained using various methods (RF-method, XGBoost, ANN, SVM, and logistic regression) with independent test 
dataset, in terms of accuracy, AUC of the ROC curve, F1 score, and AUC of the precision-recall curve. a RA patients. b AS patients. LR, logistic 
regression

Fig. 4  Result of feature importance analysis from the best performing models of each machine learning method. The X-axis represents the input 
clinical features. The Y-axis represents the feature importance score calculated using the Gini importance or risk backpropagation methods in 
RF-method/XGBoost and ANN, respectively. The color of columns represents the categories in which the feature was included. Top 20 important 
features are shown in figures. Feature importance of a RF-method model, b XGBoost model, and c ANN model in patients with RA. Feature 
importance of d RF-method model, e XGBoost model, and f ANN model in patients with AS. WBC, white cell count; BMI, body mass index; Plt, 
platelet; Hb, hemoglobin; Hct, hematocrit; DM, diabetes mellitus; anti-CCP, anti-cyclic citrullinated protein; ILD, interstitial lung disease; MTX, 
methotrexate; TACRO, tacrolimus; LEFL, leflunomide; SSZ, sulfasalazine

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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accurately than the conventional statistical method, 
which is logistic regression. However, machine learn-
ing models to predict treatment responses of biologic 
agents in AS patients are not superior in contrast to RA. 
According to the feature importance analysis, patient 
self-reporting scales were the most important input fea-
tures in both diseases. Only a few previous studies have 
been published to predict treatment responses to bio-
logic agents in RA patients [16, 34]. However, the present 
study includes a more detailed feature importance anal-
ysis than previous studies. Furthermore, this is the first 
attempt to predict the treatment responses of bDMARDs 
in AS patients.

We implemented various machine learning methods 
to predict treatment responses, including RF-method, 
XGBoost, ANN, and SVM. Both RF-method and 
XGBoost are ensemble models that consist of numerous 
small decision trees. RF-method is based on a bagging 
algorithm, and XGBoost is based on a gradient boosting 
algorithm. Although SVM is relatively older, it exhibits 
a satisfactory performance in simple image classifica-
tion with little computational burden. ANNs are gradu-
ally gaining popularity as they obtain successful results 
in various fields, such as image classification. However, 
decision-tree-based algorithms show better performance 
in certain circumstances, such as small, tabular data [35]. 
RF-method showed better prediction performance than 
ANN in RA patients in this study. In addition, the opti-
mal ANN prediction model had only one (RA) or two 
(AS) hidden layers, which are too shallow to obtain the 
advantage of ANN. Therefore, our input data seemed 
unsuitable for the ANN. This could be because of the rel-
atively small size of the input data.

RF-method showed better prediction performance 
than logistic regression in patients with RA but not in 
those with AS. In addition, the prediction performance 
of the various models was lower in AS patients. Deter-
mining the exact reason requires further research and is 
beyond the scope of this study, although some specula-
tion can be made. The number of data points was slightly 
smaller in AS; however, the difference was only 5–10% 
of all patients. The number of input features of the AS 
was higher than that of the RA. RA had a more unbal-
anced responder/non-responder proportion, which gen-
erally had a negative effect on machine learning results. 
Thus, the differences in the prediction performance were 
unlikely because of the structure of the input dataset. If 
so, we could assume that the input features were insuf-
ficient to predict the treatment response of bDMARDs 
in patients with AS. Heritability analysis implied that 
AS has more genetic factors than RA, with higher her-
itability of approximately 80–90% [36–39] vs. 50–60% 
[40, 41] in AS and RA, respectively. Previous studies have 

shown that genetic features could affect the response of 
bDMARDs in patients with AS [42, 43]. In addition, there 
have been pilot studies of transcriptome analysis [44, 45] 
to predict the responses of bDMARDs in patients with 
AS. Therefore, multi-omics data, including genetics and 
transcriptomics, may improve prediction performance.

Feature importance analysis can provide insights into 
clinical factors. In this study, machine learning models 
revealed that the patient self-reporting scales, PtGA and 
BASFI in RA and AS patients, respectively, were the most 
important factors for predicting treatment responses. 
It is quite surprising because they are more important 
than more objective clinical features, such as laboratory 
results (ESR and CRP) and physical examination (SJC and 
TJC). Previous studies reported patient self-reporting 
scales, such as RAPID3 [46] or BASFI [47] as predictors 
of bDMARD treatment. However, their relative impor-
tance compared with other objective disease activities or 
functional measures has not been studied. In addition, 
given that the results of feature importance were similar 
except for ANN in RA patients, which had inferior per-
formances, the result of the feature important analysis 
was robust.

The prediction models were trained for each medica-
tion use separately. However, the performance of pre-
diction models using RF-method was not superior to 
that of logistic regression models in each medication 
dataset. Only the prediction model of adalimumab users 
in patients with AS using RF-method had a borderline 
superior result to the logistic regression model. The 
results of the feature importance analysis for each medi-
cation user were not consistent. Again, only the model of 
adalimumab patients in patients with AS showed simi-
lar results to the entire cohort in the feature importance 
analysis. Adalimumab users in patients with AS occupied 
the largest patient group with 253 individuals, while the 
other cohorts comprised less than 200 patients. There-
fore, the size of the patient group must be an impor-
tant factor in generating a proper predictive model, and 
approximately 250 people could be the lower limit of size.

However, our approach had some limitations. First, 
even though we divided part of the dataset by the region 
of hospitals as an independent test dataset and did not 
participate in any part of the training machine learning 
model, the validation cohort was not retrieved from a 
completely different cohort. However, forty-five hospi-
tals were involved in the KOBIO cohorts, and each hos-
pital had an independent enrollment process, assessment 
physician, and laboratory institution. Thus, we expect 
that pre-divided test dataset represents an independent 
cohort. Second, all participants were Koreans, therefore 
we do not assure that the models we generated showed 
similar results in other populations. When applied to 
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other populations, new patient data or feature selection 
may be required in advance.

Conclusions
In conclusion, we developed several machine learning 
models that could predict the treatment responses of bio-
logic agents in patients with RA and AS. The best-per-
forming model was trained using RF-method in patients 
with RA. The model performs better than the conven-
tional statistical method, logistic regression. Given the 
input clinical features, machine learning models have no 
advantages compared to a logistic regression model in 
patients with AS. Feature importance analysis shows that 
patient self-reporting scales, PtGA and BASFI in RA and 
AS patients, respectively, are the most important input 
features for machine learning prediction models.
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