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Abstract 

Objective:  During treatment with immune checkpoint inhibitors (ICI) such as the anti-PD-1 antibody pembroli‑
zumab, half of patients with pre-existing inflammatory arthritis experience disease flares. The underlying immunologi‑
cal mechanisms have not been characterized. Here, we investigate the effect of pembrolizumab on cells involved 
in inflammation and destruction in the synovial joint and how immunosuppressive treatments affect the pembroli‑
zumab-induced immune reactions.

Methods:  We included synovial fluid mononuclear cells (SFMCs, n = 28) and peripheral blood mononuclear cells 
(PBMCs, n = 6) from patients with rheumatoid arthritis and peripheral spondyloarthritis and PBMCs from healthy 
controls (n = 6). Fibroblast-like synovial cells (FLSs) were grown from SFMCs. The in vitro effect of pembrolizumab was 
tested in SFMCs cultured for 48 h, FLS-PBMC co-cultures and in SFMCs cultured for 21 days (inflammatory osteoclas‑
togenesis). Cells and supernatants were analyzed by ELISA, flow cytometry, and pro-inflammatory multiplex assay. 
Finally, the effect of the disease-modifying anti-rheumatic drugs (DMARDs) adalimumab (TNFα inhibitor), tocilizumab 
(IL-6R inhibitor), tofacitinib (JAK1/JAK3 inhibitor), and baricitinib (JAK1/JAK2 inhibitor) on pembrolizumab-induced 
immune reactions was tested.

Results:  Pembrolizumab significantly increased monocyte chemoattractant protein-1 (MCP-1) production by arthritis 
SFMCs (P = 0.0031) but not by PBMCs from patients or healthy controls (P = 0.77 and P = 0.43). Pembrolizumab did 
not alter MMP-3 production in FLS-PBMC co-cultures (P = 0.76) or TRAP secretion in the inflammatory osteoclas‑
togenesis model (P = 0.28). In SFMCs, pembrolizumab further increased the production of TNFα (P = 0.0110), IFNγ 
(P = 0.0125), IL-12p70 (P = 0.0014), IL-10 (P = 0.0100), IL-13 (P = 0.0044), IL-2 (P = 0.0066), and IL-4 (P = 0.0008) but did 
not change the production of IL-6 (P = 0.1938) and IL-1 (P = 0.1022). The SFMCs treated with pembrolizumab showed 
an increased frequency of intermediate monocytes (P = 0.044), and the MCP-1 production increased only within the 
intermediate monocyte subset (P = 0.028). Lastly, adalimumab, baricitinib, and tofacitinib treatment were able to 
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Introduction
During cancer treatment with immune checkpoint inhib-
itors (ICI), half of patients with pre-existing inflamma-
tory arthritis have disease flares [1]. Such reactions are 
part of the immune activation often seen with ICI treat-
ment and are termed immune related adverse events 
(IRAEs). These disease flares resemble disease activ-
ity usually seen in patients with inflammatory arthritis 
including swollen and tender joints. However, the spe-
cific underlying mechanisms of ICI-associated inflamma-
tory arthritis have not been studied.

The programmed death 1 (PD-1) receptor and its 
ligands PD-L1 and PD-L2 are co-inhibitory receptors, 
which negatively regulate T cell activity, for this rea-
son usually referred to as immune checkpoints [2–5]. 
The recently developed ICIs function by blocking these 
co-inhibitory receptors, e.g., pembrolizumab is a block-
ing antibody targeting the PD-1 receptor. By remov-
ing the inhibitory signals in the immune system, a now 
well-described series of events induce anti-cancer effects 
mediated primarily by CD8+ T cells [3, 6, 7]. However, 
it is not known whether IRAEs are a result of stimulated 
CD8+ T cells or the consequence of activation of other 
parts of the immune system.

The pathogenesis of traditional immune-mediated 
inflammatory arthritis encompasses both systemic 
inflammation and a more local inflammatory response 
promoting joint destruction [8]. Cells of the mono-
nuclear phagocytic system, especially monocytes and 
macrophages, are major factors in the inflammatory 
process. Monocytes are divided into three subsets, 
namely the classical monocytes (CD14+CD16−), inter-
mediate monocytes (CD14+CD16+), and non-classical 
monocytes (CD14−CD16+) [9, 10]. While the classi-
cal monocytes are the most abundant type in healthy 
individuals, the CD16+ monocytes increase during 
inflammation, including in autoimmune diseases [10, 
11]. When activated, they produce pro-inflamma-
tory cytokines including tumor necrosis factor alpha 
(TNFα), IL-6, and monocyte chemoattractant protein 
1 (MCP-1) [12, 13]. The joint destruction in inflam-
matory arthritis is primarily mediated by fibroblast-
like synoviocytes (FLS) and osteoclasts. These cells 
produce matrix metalloproteinases (e.g., matrix 

metalloproteinase-3, MMP-3) and enzymes (e.g., tar-
trate-resistant acid phosphatase, TRAP), which facili-
tate cartilage breakdown and bone destruction [14, 15].

Here, we investigate the effect of pembrolizumab 
on cells involved in inflammation and destruction in 
the synovial joint and how immunosuppressive treat-
ments affect the pembrolizumab-induced immune 
reactions. We specifically hypothesized that monocytes 
are activated in pembrolizumab-induced immune reac-
tions seen in patients with pre-existing inflammatory 
arthritis.

Materials and methods
Study population and ethics
The study population (Table 1) consists of synovial fluid 
mononuclear cells (SFMCs, n = 28) from patients with 
RA (n = 14), peripheral spondyloarthritis (SpA) (n = 9), 
and PsA (n = 5). Additionally, peripheral blood mononu-
clear cells (PBMCs) from 6 of these patients (3 SpA and 3 
RA patients) were obtained. None of these patients had 
a cancer diagnosis or had been treated with ICI therapy 
in  vivo. There were two main inclusion criteria in this 
study. (1) The patients had to fulfill either the EULAR/
ACR classification criteria for RA, the ASAS classifica-
tion criteria for peripheral SpA, or the CASPAR criteria 
for PsA [16–18]. (2) We also included patients with at 
least one swollen joint requiring joint fluid aspiration as 
part of therapy. The synovial fluid was primarily obtained 
from large joints such as knee, shoulder, and ankle joints. 
The exact anatomical site was not registered as part of 
sample collection. PBMCs (n = 6) from healthy con-
trols were obtained from the blood bank (Department 
of Immunology, Aarhus University Hospital). The num-
ber of patients in each experiment is listed in the figure 
legends.

Isolation of mononuclear cells
SFMCs and PBMCs were isolated using Ficoll-Paque den-
sity centrifugation. The isolated cells were cryopreserved 
in freeze medium (70% [v/v] RPMI-1640 + 20% [v/v] 
heat-inactivated FCS + 10% [v/v] DMSO) and stored at 
− 135 °C until use.

attenuate the pembrolizumab-induced MCP-1 production (P = 0.0004, P = 0.033, and P = 0.025, respectively), while 
this was not seen with tocilizumab treatment (P = 0.75).

Conclusion:  Pembrolizumab specifically activated intermediate monocytes and induced the production of several 
cytokines including TNFα but not IL-6. These findings indicate that flares in patients with pre-existing inflammatory 
arthritis involve monocyte activation and could be managed with TNFα neutralization.

Keywords:  Immunotherapy, Arthritis, Cytokine, Monocyte
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The 48‑h SFMC and PBMC models
The SFMC and PBMC cultures primarily consisted of 
monocytes and lymphocytes. The cells were thawed at 
37 °C and seeded at a concentration of 2 million cells/
mL in DMEM with 10% FCS and penicillin and strepto-
mycin as done previously [19]. SFMCs and PBMCs were 
cultured with pembrolizumab at 5 μg/mL for 48 h. In all 
experiments, culture medium and lipopolysaccharide 
(LPS) at 100 ng/mL (Sigma-Aldrich, St. Louis, MO, USA) 
were included as negative and positive controls, respec-
tively [20]. After 48 h of incubation, cell suspensions 
were transferred to Eppendorf tubes and centrifuged at 
300 × g, 10 min, RT. The supernatants were collected 
and stored until later analysis by MCP-1 ELISA and the 
V-plex pro-inflammatory panel as previously described 
[21].

Monocyte flow cytometry
SFMCs were seeded at a concentration of 1 million 
cells/mL. Brefeldin A (Sigma-Aldrich) was added dur-
ing the last 4 h of incubation at 10 μg/mL. Non-adher-
ent cells were harvested by washing the plates with 
culture medium. The adherent cells were detached using 

a detachment buffer (PBS/0.5% BSA/5 mM EDTA/4 mg/
mL Lidocaine) for 10 min at 37 °C followed by scraping 
with a sterile cell scraper. The cells were stained with 
antibodies to CD45 conjugated with AF700 (clone: HI30, 
BD bioscience, Albertslund, Denmark), CD16 conju-
gated to PE-Cy7 (clone: 3G8, Biolegend, San Diego, CA, 
USA), CD14 conjugated to V500 (Clone: MφP9, BD Bio-
science), TLR-2 conjugated to BB700 (clone: 11G7, BD 
bioscience,), and live/dead viability dye (Life Technolo-
gies, Naerum, Denmark). To prevent non-specific stain-
ing, the cells were blocked with human IgG at 100 μg/
mL (Beriglobin, CSL Behring, King of Prussia, PA) and 
phosphorothyoate-oligo-deoxynucleotides 10 μg/mL 
[22, 23]. After surface staining, cells were fixed using 4% 
(v/v) formaldehyde diluted in PBS and permeabilized 
using 0.2% (w/v) saponin (Sigma-Aldrich) in PBS with 
0.5% (w/v) BSA and 0.09% (v/v) NaN3 (permeabilization 
buffer). Then, intracellular staining was performed with 
MCP-1 conjugated to PE (clone: 5D3-F7, BD bioscience) 
and cells were run on a LSR Fortessa flow cytometer (BD 
Bioscience) [24]. Fluorescence minus one (FMO) controls 
for MCP-1 and CD16 as well as unstained samples were 
included to determine the threshold for positive staining. 
Analysis of data was performed in FlowJo version 10.5.0 

Table 1  Patient characteristics

Data are expressed as median and IQR

Missing data (n): age (1), gender (1), CRP (1), patient global VAS (6), swollen joint count (1), tender joint count (1), disease duration (1), RF (1), anti-CCP (1), treatment (1)

Abbreviations: RA rheumatoid arthritis, SpA spondyloarthritis, PsA psoriatic arthritis, CRP C-reactive protein, DAS28CRP Disease Activity Score 28 based on CRP, RF 
rheumatoid factor, Anti-CCP antibodies targeting citrullinated peptides, csDMARDs conventional synthetic disease-modifying anti-rheumatic drugs, bDMARDs biologic 
disease-modifying anti-rheumatic drugs, IQR interquartile range

Patient characteristics

Diagnosis RA (n = 14) Peripheral SpA (n = 9) PsA (n = 5)

Age (years) 53 (36.5– 59) 40 (33–43) 45 (35–49)

Gender (females) 5 4 3

Disease activity
  CRP (mg/L) 19 (8.7–20.75) 16.25 (5.5–44.13) 4 (3–5)

  DAS28CRP 3.71 (3.19–4.12) 3.50 (2.90–4.66) 3.01 (2.79–3.68)

  Swollen joint count 1 (1–2.75) 1.5 (1–2) 1.5 (0.75–5.25)

  Tender joint count 1 (1–2.5) 1 (1–2) 1.5 (0.75–3)

  Disease duration (years) 11 (5–18) 2 (0.5–15) 14 (5–14)

  RF positive (n) 4 0 0

  Anti-CCP positive (n) 4 0 0

  HLA-B27 (n) – 5 –

Treatment
  csDMARDs
    MTX (n) 10 2 3

    Salazopyrine (n) 3 3 0

  bDMARDs
    TNF-inhibitor (n) 4 4 1

No DMARDs (n) 2 4 2
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for Mac. The gating strategy used to identify monocyte 
subsets was confirmed by staining PBMCs from healthy 
controls (Supplementary, figure S1).

Cell culture treatment with immunosuppressive drugs
SFMCs were seeded in a density of 2 million cells/mL. 
SFMCs were cultured with pembrolizumab at 5 μg/
mL with or without the TNFα inhibitor adalimumab 
(Humira™, Abbvie, North Chicago, IL, USA) at 5 μg/mL, 
the IL-6R inhibitor tocilizumab (RoActemra™, Roche, 
Hvidovre, Denmark) at 5 μg/mL or the Janus kinase 
(JAK) inhibitors tofacitinib citrate at 200 nM (Selleck-
chem, Munich, Germany), or baricitinib citrate at 200 nM 
(Selleckchem) as described previously [25, 26]. In all 
experiments, negative controls included untreated cells 
or the vehicle dimethyl sulfoxide (DMSO). Cell cultures 
treated with LPS at 100 ng/mL were included as positive 
controls for cytokine expression. After 48 h of incubation, 
cell suspensions were transferred to Eppendorf tubes and 
centrifuged at 300 × g for 10 min at RT. The supernatants 

were collected and stored until later analysis for MCP-1 
production.

MCP‑1 and MMP3 ELISA and TRAP measurement
The concentration of MCP-1 (Biolegend) and MMP-3 
(R&D Systems) were analyzed by commercially avail-
able enzyme-linked immunosorbent assays (ELISAs) 
according to the manufacturer’s instructions. The con-
centration of TRAP was analyzed by an enzymatic assay 
(B-bridge International) according to the manufacturer’s 
instructions.

V‑plex pro‑inflammatory panel 1
The supernatants were analyzed for the production of 10 differ-
ent pro-inflammatory cytokines (IFNγ, IL-1β, IL-2, IL-4, IL-6, 
IL-8, IL-10, IL-12p70, IL-13, and TNFα) using a V-plex pro-
inflammatory panel 1 kit (Meso Scale Discovery, catalog num-
ber: K15049D-1, V-plex pro-inflammatory panel 1) according 
to the manufacturer’s instructions. IL-8 was excluded because 
all data points were above the detection range.

Fig. 1  MCP-1 production following treatment with pembrolizumab. A–C MCP-1 production in SFMCs (n = 16, 3 SpA patients, 5 PsA patients, and 
8 RA patients) and PBMCs (n = 6, 3 SpA patients and 3 RA patients) from patients and healthy controls (n = 6) cultured for 48 h untreated (UT) or 
treated with pembrolizumab (Pembro) or LPS. D–F Data were normalized to untreated cultures and expressed as ratios. Data is presented as median 
with interquartile range. Log-transformed ratios were analyzed with the paired Student’s t-test. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001
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Statistics
Statistical analyses and graphs were done using Graph-
Pad Prism 7. Data were normalized into ratios by dividing 
the value of each sample with the value of the negative 
control cultures. Whether data followed a normal distri-
bution was assessed by QQ-plots and histograms. Log 
transformation of ratios was used to achieve a normal 
distribution and a paired Student’s t-test was performed. 
Statistical significance was based on a P-value < 5%.

Results
Pembrolizumab increases MCP‑1 production in SFMCs 
but not in PBMCs
First, we wanted to study the effects of pembrolizumab 
in  vitro to test the hypothesis that mononuclear cells 
from an inflamed environment would be more sen-
sitive to pembrolizumab treatment. We compared 
SFMCs from patients with inflammatory arthritis with 
PBMCs from both patients and healthy controls. Pem-
brolizumab only increased the MCP-1 production in 
the SFMC cultures (P = 0.0031), whereas PBMCs from 
both healthy controls and patients were not affected by 
the pembrolizumab treatment (P = 0.43 and P = 0.77, 
respectively) (Fig.  1). This indicated that the immune 

checkpoint inhibition caused by pembrolizumab only 
induced immunological reactions in cells already acti-
vated in  vivo. In contrast, LPS increased the MCP-1 
production in both SFMC and PBMC cultures (SFMCs, 
P < 0.0001; arthritis PBMCs, P = 0.0031; HC PBMCs, 
P = 0.0026) (Fig.  1). Taken together, this indicates that 
arthritis SFMCs can be used to study pembrolizumab-
induced immunological reactions. Furthermore, no 
visual difference was seen when comparing response 
to pembrolizumab in SFMCs from RA, SpA, and PsA 
patients (Supplementary, figure S1).

Pembrolizumab does not increase the production 
of MMP‑3 or TRAP
Inflammatory arthritis is often characterized by joint 
destruction. Therefore, we investigated whether pem-
brolizumab increased the production of proteases 
and enzymes involved in this process. When treating 
the FLS-PBMC co-cultures with pembrolizumab, no 
increase in MMP-3 production was seen (P = 0.76). 
Similarly, in SFMCs cultured for 21 days with pembroli-
zumab, no difference in TRAP secretion was observed 
(P = 0.28) (Fig. 2).

Fig. 2  MMP-3 and TRAP production following treatment with pembrolizumab. A MMP-3 production in the FLS-PBMC co-culture cultured for 48 h 
untreated (UT) or treated with pembrolizumab (Pembro) or LPS (n = 6, 3 SpA patients and 3 RA patients). B TRAP activity in SFMCs cultured for 
21 days untreated (UT) or treated with pembrolizumab (Pembro) or LPS (n = 14, 7 SpA patients and 7 RA patients). C, D Data were normalized to 
untreated cultures and expressed as ratios. Data is presented as median with interquartile range. Log-transformed ratios were analyzed with the 
paired Student’s t-test. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001
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Pembrolizumab increases the frequency of synovial fluid intermediate monocytes

Fig. 3  Distribution of the monocyte subsets among SFMCs following treatment with pembrolizumab (n = 4, 2 patients with SpA and 2 patients 
with PsA). A Representative CD14 vs. CD16 dot plot of monocyte subsets (CD14+CD16−: classical monocytes; CD14+CD16+: intermediate 
monocytes) in untreated cultures (UT), pembrolizumab treated cultures (Pembro), and LPS-treated cultures (LPS). B Upper panel: Frequency of 
classical monocytes in each culture. Lower panel: Data were normalized to untreated cultures and expressed as ratios. C Upper panel: Frequencies 
of intermediate monocytes in each culture. Lower panel: Data were normalized to untreated cultures and expressed as ratios. Data is presented as 
median with interquartile range. Log-transformed ratios were analyzed with the paired Student’s t-test. *P-value < 0.05, **P-value < 0.01
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Next, we used intracellular flow cytometry to charac-
terize the cell type responsible for the MCP-1 produc-
tion. We characterized the monocytes as CD45+/Live/
TLR-2+/single cells (Supplementary, figure S2 and S3). 
These cells were then divided into subsets based on 
their expression of CD14 and CD16 as done previously 
[27, 28]. Here, SFMCs treated with pembrolizumab 
showed a small but consistent increase in the frequency 
of intermediate monocytes (P = 0.044) and a concomi-
tant decrease in the frequency of classical monocytes 
(P = 0.047) compared with untreated cultures. In con-
trast, cultures treated with LPS showed an increase in 
the classical monocytes and a decrease in the inter-
mediate monocytes (P = 0.0045 and P = 0.021, respec-
tively) (Fig. 3).

Pembrolizumab increases the MCP‑1 production 
in intermediate monocytes but not in classical monocytes
Then, MCP-1 production in all monocytes as well as 
the different monocyte subsets was evaluated using 
intracellular flow cytometry. Pembrolizumab increased 
the MCP-1 production when gating on all monocytes 
(P = 0.0191) supporting findings made by ELISA (sup-
plementary, figure S4). Strikingly, however, pembroli-
zumab increased the MCP-1 production specifically in 
the intermediate monocytes (P = 0.028) but not in the 
classical monocytes (P = 0.32) (Fig. 4). In contrast, LPS 
increased the production of MCP-1 in both interme-
diate monocytes (P = 0.0010) and classical monocytes 
(P = 0.0221) (Fig. 4).

Pembrolizumab increased the production of TNF‑α, IL‑10, 
IL‑12p70, IFN‑γ, IL‑13, IL‑2, and IL‑4 but not IL‑6 and IL‑1
Now, we investigated the cytokine profile induced by 
pembrolizumab in more detail with the V-plex pro-
inflammatory multiplex panel. Pembrolizumab signifi-
cantly increased the production of TNFα (P = 0.0110), 
IL-10 (P = 0.0100), IL-12p70 (P = 0.0014), IL-13 
(P = 0.0044), IFNγ (P = 0.0125), IL-2 (P = 0.0066), and 
IL-4 (P = 0.0008). Interestingly, however, IL-6 and IL-1 
did not increase in pembrolizumab treated cultures 
(P = 0.1938, P = 0.1022) (Fig. 5).

TNFα and JAK/STAT inhibitors decreased 
the pembrolizumab‑induced MCP‑1 production but IL‑6R 
inhibition did not
We furthermore investigated the cytokine profile by cul-
turing the pembrolizumab treated cells with different 
cytokine targeting DMARDs used in the treatment of 
immune-mediated inflammatory arthritis. Adalimumab, 
tofacitinib, and baricitinib decreased the MCP-1 pro-
duction (P = 0.0004, P = 0.033, and P = 0.024, respec-
tively). In contrast, in cultures treated with tocilizumab 
no decrease in MCP-1 production was seen (P = 0.7488) 
(Fig. 6).

Discussion
Patients with pre-existing inflammatory arthritis often 
experience disease flare during ICI treatment. This 
can lead to discontinuation of otherwise well indicated 
immunotherapy. Identification of the mechanisms of 
ICI induced arthritis disease flare could guide therapeu-
tic management. We investigated the effect of the PD1 
inhibitor pembrolizumab on synovial cells from patients 
with inflammatory arthritis (Fig. 7).

First, we used SFMCs and PBMCs from patients with 
inflammatory arthritis and healthy controls to inves-
tigate the response to anti-PD-1 treatment with pem-
brolizumab in  vitro. Here, only the SFMCs produced 
MCP-1 following pembrolizumab treatment. This find-
ing is in line with previous studies showing that pem-
brolizumab requires an activated immune response 
to unleash additional immune activation and that the 
expression of PD-1 and PD-L1 is increased in inflam-
matory arthritis [6, 29]. We speculate that the differ-
ence between response to pembrolizumab in SFMCs 
and PBMCs is due to upregulated PD1 and PD1 ligands 
in SFMCs. However, we did not measure PD1 and PDL1 
expression on SFMCs used in this study. Therefore, it 
is not possible to make associations between cellular 
expression of PD1 and the effect of pembrolizumab. 
Not all donors showed a response to the treatment. This 
study was too small to make comparisons of pembroli-
zumab responses in patients with RA, PsA, and periph-
eral SpA. However, there were no visual differences in 
response pembrolizumab in the SFMC cultures from 

Fig. 4  MCP-1 production in the monocyte subsets following treatment with pembrolizumab in SFMCs from arthritis patients (n = 4, 2 SpA patients 
and 2 PsA patients). A Representative dotplots of MCP-1 production in classical monocytes. B Representative dot plots of MCP-1 production in 
intermediate monocytes. C Upper panel: Frequency of MCP-1+ cells in classical monocytes in each culture. Lower panel: Data were normalized and 
expressed as ratios. D Upper panel: Frequency of MCP-1+ cells in intermediate monocytes in each culture. Lower panel: Data were normalized and 
expressed as ratios. All data are expressed as median with interquartile range. Log-transformed ratios were analyzed with the paired Student’s t-test. 
*P-value < 0.05, **P-value < 0.01, ***P-value < 0.001. UT, untreated; Pembro, pembrolizumab

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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patients with the three disease groups. This study was 
also too small to make comparisons of pembrolizumab 
responses in patients treated with a TNF inhibitor at 
the time of sample collection compared with patients 
not treated with a TNF inhibitor. The patients included 
were also not entirely representative of patients seen in 

the everyday rheumatologic clinic. This is likely because 
patients in this study were included based on having a 
large swollen joint. Patients with recurrent inflamma-
tion of the knee or ankle will be different compared 
with patients having primarily symmetric small joint 
polyarthritis or primarily axial involvement.

Fig. 5  Production of different pro-inflammatory cytokines by SFMC cultures following treatment with pembrolizumab (n = 11). Production of TNF, 
IL-6, IFN-γ, IL-12p70, IL-10, IL-1β, IL-2, IL-13, and IL-4 in SFMCs from arthritis patients cultured for 48 h untreated (UT) or treated with pembrolizumab 
(Pembro) (8 RA patients, 2 PsA patients, and 1 SpA patient). Data were normalized to untreated cultures and expressed as ratios. Cytokine 
measurements were excluded if levels were above or below the detection range. All data are expressed as median with interquartile range. 
Log-transformed ratios were analyzed with the paired Student’s t-test. *P-value< 0.05, **P-value < 0.01, ***P-value< 0.001
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Inflammatory arthritis is often associated with joint 
destruction. Therefore, the role of pembrolizumab was 
also studied using FLS-PBMC co-cultures and SFMC 
21-day cultures. Pembrolizumab did not induce MMP-3 
or TRAP production. This implies that pembrolizumab 
does not activate fibroblasts or osteoclasts and might 
not lead to a joint-destructive phenotype of arthritis. 
Nevertheless, joint destruction and fractures have been 
reported as a result of ICI treatment and activation of 
osteoclasts in  vivo cannot be excluded [30–32]. To our 
knowledge, there are still no systematic reports on radio-
graphic outcomes in patients with ICI-induced inflam-
matory arthritis.

Next, we aimed to characterize the cells responsi-
ble for MCP-1 production using flow cytometry. We 
focused on monocytes because these cells have been 
shown previously to produce MCP-1 [24]. MCP-1 pro-
duction increased in monocytes following treatment with 
pembrolizumab, confirming the ELISA results. Further-
more, we identified the intermediate monocytes to be 
the main producers of MCP-1. Other studies have pre-
viously reported that intermediate monocytes express 
higher levels of both PD-1 and PD-L1 compared to clas-
sical monocytes [33]. This may explain why these cells 
are more responsive to pembrolizumab treatment. As a 
control, LPS stimulated both subsets of monocytes. This 

Fig. 6  MCP-1 production in SFMC cultures treated with pembrolizumab combined with different DMARDs. A MCP-1 production in SFMCs cultured 
for 48 h untreated (UT) or treated with pembrolizumab (Pembro), pembrolizumab + adalimumab (Ada), pembrolizumab + tocilizumab (Toci) 
(n = 10, 2 RA patients, 4 PsA patients, and 4 SpA patients). A MCP-1 production in SFMCs cultured for 48 h untreated (UT) or treated with DMSO, 
pembrolizumab (Pembro), pembrolizumab + tofacitinib (Tofa), or pembrolizumab + baricitinib (Bari) (n = 7, 3 PsA patients and 4 SpA patients). 
C, D Data were normalized to untreated cultures and expressed as ratios. Data is expressed as median with interquartile range.. Log-transformed 
ratios were analyzed with the paired Student’s t-test. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001. DMSO, dimethyl sulfoxide; Pembro, 
pembrolizumab; Ada, adalimumab; Toci, tocilizumab; Tofa, tofacitinib; Bari, baricitinib
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is consistent with expression of Toll like receptor 4 and 
CD14 in both classical and intermediate monocytes [34]. 
It is also interesting that pembrolizumab increased the 
frequency of intermediate monocytes. In RA, intermedi-
ate monocytes are expanded in peripheral blood and in 
synovial fluid, and the frequency of intermediate mono-
cytes in the periphery is associated with disease sever-
ity [35, 36]. Further, intermediate monocytes have been 
shown to be the predominant subset differentiating into 
inflammatory macrophages in the arthritic joint [37]. 
However, the function of the different monocyte sub-
sets is still under investigation [38]. The mechanism for 
the increased production of MCP-1 by monocytes can-
not be concluded based on the ex vivo model used in this 
study. Importantly, we did not explore changes in B cells, 
T cells, NK cells, or any other cell type. Likely, PD1 inhi-
bition with pembrolizumab exerts effects on several cell 
subsets leading to upregulation of MCP-1 by intermedi-
ate monocytes.

To further clarify the immune response initiated 
by pembrolizumab, the production of a panel of pro-
inflammatory cytokines was evaluated using a multi-
plex assay. Interestingly, we saw an increase in TNFα 
production but not in IL-6 production. It is obviously 
not possible to separate the contribution from mono-
cytes from the contribution from other cells types 
such as B cells, T cells, and NK cells in the cell culture 
when measuring supernatants. However, this finding 
is interesting because previous studies have shown 

that intermediate monocytes primarily produce 
TNFα while classical monocytes primarily produce 
IL-6 [39, 40]. Our findings could thus be explained by 
activation of intermediate monocytes and increased 
expression of effector cytokines from these cells. 
To validate these findings, we tested whether com-
mercially available cytokine inhibitors affected the 
pembrolizumab-induced induction of MCP-1. There-
fore, pembrolizumab treatment was combined with 
adalimumab (TNFα inhibitor) or tocilizumab (IL-6R 
inhibitor). TNFα inhibition decreased the MCP-1 
production, whereas IL-6R inhibition did not. These 
findings are in line with clinical studies showing that 
ICI-induced arthritis can be treated successfully with 
drugs blocking TNFα [41–43]. Taken together, these 
observations indicate that TNFα is important for 
inflammation induced by PD-1 blockade. Our find-
ings imply that IL-6 does not play a significant role 
in pembrolizumab-induced inflammation. However, 
clinical studies have shown that inhibition of IL-6 
signaling can manage severe immune-related adverse 
events such as pneumonitis, serum sickness, and cer-
ebritis [44]. A small case series of three patients also 
reported clinical benefit of tocilizumab treatment in 
ICI-induced inflammatory arthritis [43]. In our study, 
the pembrolizumab-induced immune reactions were 
also dampened by the two JAK inhibitors tofacitinib 
(JAK1/3 inhibitor) and baricitinib (JAK1/2 inhibitor). 
It is not possible to identify the cytokines responsible 

Fig. 7  The main findings. Pembrolizumab inhibits the engagement of PD-1 with PD-L1. Removing this immunological brake in SFMC cultures 
resulted in differentiation of monocytes into intermediate monocytes. The intermediate monocytes showed an increased production of CCL-2 
(MCP-1) and TNFα upon pembrolizumab stimulation. No increase was seen in IL-6 production. Inhibiting TNFα production with adalimumab 
decreased pembrolizumab-induced MCP-1 production. Blocking IL-6 secretion with tocilizumab did not decrease the pembrolizumab-induced 
immune reactions. Illustration made with BioRendor
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for the effect of JAK inhibition in this study. However, 
JAK signaling is utilized by several of the cytokines 
measured in the V-plex assay including IL-10, IL-
12p70, IFN-γ, IL-13, IL-2 and IL-4, and IL-6. There-
fore, JAK inhibition could prevent MCP-1 secretion 
in the SFMC cultures by preventing signaling through 
these cytokine receptors. It is not known whether the 
mechanisms demonstrated in these short duration 
models truly reflect treatment effects in  vivo where 
IRAEs and response to DMARDs often occur after 
several weeks. Specifically, the sample size was too 
small to study differences in TNFα and IL-6 secretion 
between RA, PsA and peripheral SpA. Randomized 
trials are obviously needed to elucidate the efficacy of 
different DMARDs in these diseases.

Whether DMARDs and other immunomodulatory 
agents affect the anti-cancer potential of checkpoint 
inhibitors is still not understood. Recently, MCP-1 and 
TNFα levels have been associated with the overall sur-
vival following treatment with ICIs [45]. This could imply 
that an inhibition of the monocytes with DMARDs may 
interfere with the mode of action of ICI treatment. On 
the other hand, the increased levels of MCP-1 and TNFα 
could also reflect a general bystander immune activation 
initiated by the cancer treatment. This would imply that 
treating the IRAEs would not interfere with ICI anti-can-
cer effects.

Conclusions
Taken together, we found that intermediate monocytes 
are activated when SFMC cultures are treated with 
pembrolizumab. Pembrolizumab-induced the produc-
tion of several cytokines and TNFα seems to be more 
important than IL-6. Our findings indicate that flares in 
patients with pre-existing inflammatory arthritis involve 
monocyte activation and could be managed with TNFα 
neutralization. MMP3 production from FLSs and TRAP 
activity in osteoclasts were not increased by pembroli-
zumab suggesting that joint destructive processes might 
not be induced by PD1 inhibition. This was a relatively 
small study and needs replication in larger studies and in 
arthritis in vivo models.
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