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Abstract 

Background:  Biological disease-modifying antirheumatic drugs (bDMARDs) are effective in the treatment of rheu‑
matoid arthritis. However, as bDMARDs may also lead to adverse events and are expensive, tapering them is of great 
clinical interest. Tapering according to disease activity-guided dose optimization (DGDO) does not seem to affect long 
term remission rates, but flares are frequent during this process. Our objective was to develop a model for the predic‑
tion of flares during bDMARD tapering using data from routine care and to evaluate its potential clinical impact.

Methods:  We used a joint latent class model to repeatedly predict the probability of a flare occurring within the next 
3 months. The model was developed using longitudinal data on disease activity (DAS28) and other routine care data 
from two clinics. Predictive accuracy was assessed in cross-validation and external validation was performed with 
data from the DRESS (Dose REduction Strategy of Subcutaneous tumor necrosis factor inhibitors) trial. Additionally, 
we simulated the reduction in number of flares and bDMARD dose when implementing the model as a decision aid 
during bDMARD tapering in the DRESS trial.

Results:  Data from 279 bDMARD courses were used for model development. The final model included two latent 
DAS28-trajectories, bDMARD type and dose, disease duration, and seropositivity. The area under the curve of the final 
model was 0.76 (0.69–0.83) in cross-validation and 0.68 (0.62–0.73) in external validation. In simulation of prediction-
aided decisions, the mean number of flares over 18 months decreased from 1.21 (0.99–1.43) to 0.75 (0.54–0.96). The 
reduction in he bDMARD dose was mostly maintained, increasing from 54 to 64% of full dose.
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Background
Many rheumatoid arthritis (RA) patients who are treated 
with biological disease-modifying anti-rheumatic drugs 
(bDMARDs) achieve long periods of low disease activity 
or remission [1]. However, bDMARDs may also lead to 
adverse events, call for self-injections or hospital visits, 
and are expensive [2–4]. Thus, tapering bDMARDs to the 
lowest effective dose is of great clinical interest and may 
support the sustainability of the healthcare system as a 
whole.

The guidelines of the European League against Rheu-
matism (EULAR) on the management of RA advise to 
consider tapering in patients that are in persistent remis-
sion [5]. In addition, numerous clinical trials and reviews 
provide supportive evidence to also consider tapering in 
patients with stable low disease activity (LDA) [6, 7]. This 
is in line with routine clinical practice, as maintaining a 
satisfactory low level of disease activity with a reduced 
medication dose is also of value.

The most successful and cost-effective strategy for 
tapering appears to be “disease activity-guided dose 
optimization” (DGDO) [8–10]. This means the dose is 
gradually tapered (usually by increasing the adminis-
tration interval), until either disease activity flares or 
the bDMARD is discontinued. Two randomized trials 
have demonstrated that, using this strategy, 63–80% of 
patients can taper or even stop their bDMARD [8, 9]. No 
important difference was observed in the proportion of 
patients with LDA or remission after 18 months between 
DGDO and usual care.

However, since DGDO is a “trial and error” approach, 
flares occur frequently during the tapering process. In 
the case of a flare, the previously effective dose needs to 
be reinstated or additional therapy is necessary. Although 
these short-lived flares do not seem to relevantly affect 
radiographic progression or long-term disease activ-
ity, there is conflicting evidence regarding functional 
outcome and impact on quality of life [9, 11]. Therefore, 
it would be beneficial to predict whether, and to which 
extent, a bDMARD can be tapered in a particular patient 
without a flare occurring.

Several predictors for successful dose reduction or dis-
continuation of bDMARDs have been explored [12, 13]. 

However, these studies only included “baseline predic-
tors” from before the start of the tapering process, and 
the strength of the evidence for these predictors is lim-
ited. Furthermore, “successful tapering” is often defined 
as reaching a lower bDMARD dose at some time point 
after the start of tapering, regardless of whether a flare 
occurred during the tapering process.

Therefore, this study aims to predict the likelihood 
of a flare occurring during bDMARD tapering at each 
consecutive dose reduction step. Such a dynamic pre-
diction may be used to optimize the DGDO strategy for 
bDMARDs for an individual patient, as the decision for 
a further tapering step can be based on the predicted risk 
of a flare. This could minimize the number of flares dur-
ing tapering, while retaining most of the bDMARD dose 
reduction. To facilitate future implementation of this 
approach in routine practice, we decided to exclusively 
use information easily obtainable in regular care.

Methods
Data extraction and preparation
EHR data for model development
For the development of the prediction model, electronic 
health record (EHR) data of two rheumatology clinics in 
the Netherlands were extracted for the period 2012–2019 
and 2013–2019 respectively: the University Medical 
Center Utrecht (UMCU; an academic hospital) and Reu-
mazorg Zuid West Nederland (RZWN; a non-academic 
treatment center for rheumatic diseases). In both cent-
ers, bDMARD tapering is regularly performed, but not 
yet standard practice. Data were extracted for all RA 
patients (based on ICD-10 codes) starting a bDMARD 
and reaching a Disease Activity Score assessing 28 joints 
(DAS28) < 3.2, i.e., LDA, after at least 24 weeks of treat-
ment. The following bDMARDs were included: inflixi-
mab, adalimumab, etanercept, golimumab, certolizumab, 
tocilizumab, sarilumab, and abatacept. We selected 
patients with at least the following information available: 
bDMARD type and dose, seropositivity, disease duration, 
and ≥ 2 DAS28 measurements per year available. In addi-
tion, we aimed to extract the following data: age, gender, 
body mass index, concurrent and previous DMARD and 
glucocorticoid use, smoking status, and erosive disease.

Conclusions:  We developed a dynamic flare prediction model, exclusively based on data typically available in routine 
care. Our results show that using this model to aid decisions during bDMARD tapering may significantly reduce the 
number of flares while maintaining most of the bDMARD dose reduction.

Trial registration:  The clinical impact of the prediction model is currently under investigation in the PATIO rand‑
omized controlled trial (Dutch Trial Register number NL9798).

Keywords:  Rheumatoid arthritis, Predictive algorithm, Tapering bDMARD therapy, Applied data analytics in medicine, 
Biologicals
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To handle missing individual DAS28 components, we 
used all validated DAS28 formulae by calculating the 
mean of the 3- and 4-variable DAS28 formulae using ESR 
(erythrocyte sedimentation rate) as well as CRP (C-reac-
tive protein) [14]. We allowed a 4-week time window 
between components. Flares were defined using a vali-
dated criterion: an increase in DAS28 > 1.2 compared to 
the previous visit, or an increase of 0.6 with a resulting 
DAS28 > 3.2 [15]. In addition, an “increase in bDMARD 
dose” was also considered a flare, to also capture flares 
if insufficient information was present to calculate the 
DAS28.

All data was extracted according to current ethical and 
privacy regulations in the specific hospitals. The Medical 
Research Ethics Committee Utrecht waived the need for 
informed consent, as the development data was already 
collected in routine care and was pseudonymized before 
analysis.

DRESS data for external validation
For external validation, we extracted data from the 
DRESS trial [9]. In this trial, RA patients with stable 
LDA or remission using adalimumab or etanercept were 
randomized to either DGDO (n = 121) or routine care 
(n = 59) and followed for 18 months. The study was per-
formed between 2011 and 2014 in two Dutch clinics (Sint 
Maartenskliniek Nijmegen and Woerden). The DGDO 
group tapered the bDMARD in three steps by increas-
ing the administration interval every 3 months, followed 
by discontinuation after 6 months as long as the patient 
did not flare. In case of flare, the last effective dose was 
reinstated, and no further dose reduction attempts 
were undertaken. If nevertheless flares persisted, the 
bDMARD dose was increased to the full dose and there-
after treatment was at the rheumatologists’ discretion. In 
DRESS, flares were defined by the DAS28-CRP increase 
from baseline values.

The DRESS study (Dose REduction Strategy of Subcu-
taneous TNF inhibitors) was approved by the local ethics 
committee (Committee on Research Involving Human 
Subjects region Arnhem-Nijmegen), and informed con-
sent was signed by all included patients [9].

Model development
We developed a dynamic model to repeatedly predict the 
risk of a flare occurring in the next 3 months. This cor-
responds to a routine outpatient visit interval [13]. The 
model was developed using joint latent class mixed mod-
eling, which combines a linear mixed effects- and a time-
to-event model (R-package lcmm). Details of joint latent 
class models have been described elsewhere [16, 17].

First, in the linear mixed effects part of the model, the 
course (“trajectories”) of the DAS28 values over time 

are modeled for each patient. This is done by categoriz-
ing these trajectories into a number of subgroups: latent 
classes. The general form of these trajectories is defined 
using polynomials for the time variable. We explored 
models with a random intercept using 1–3 latent classes 
and 1st to 3rd order polynomials for the time variable, 
using a random slope for time. The best fitting model was 
selecting based on the lowest Bayesian Information Cri-
terion (BIC) [18]. Based on the final model, each individ-
ual patient has its own predicted DAS28 trajectory.

Next, these DAS28-trajectories are used as variables in 
the time-to-event part of the model. The time-to-event 
part of the model also incorporates other variables. We 
explored all variables as mentioned above in “EHR data 
for model development” and selected those that had suf-
ficient data to be extracted from the EHR. The time-to-
event model was developed stepwise starting with a full 
model, excluding variables one by one to arrive at a final 
model. The decision to exclude a variable was based on 
clinical rationale, data availability, and improvement in 
model fit in cross-validation, defined by the decrease in 
the BIC. In short, to make individual predictions, an esti-
mation is made about the individuals trajectory of the 
DAS28 over time. This trajectory is then combined with 
additional variables to calculate the probability of a flare 
occurring in the next 3 months.

We adhered to the Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) reporting guideline [19].

Model validation
We assessed the accuracy of 3-monthly flare predictions 
in the development data with 5-fold cross-validation, 
using all visits at which a DAS28 was available. The area 
under the curve of the receiver operating characteristic 
(AUC-ROC) was calculated over all time-points. Other 
performance indicators were assessed based on an opti-
mal cutoff as defined by Youden’s Index in the develop-
ment data [15]. This index is a summary measure for 
sensitivity and specificity.

External validation was performed by assessing the 
accuracy of flare predictions in data from the DRESS trial 
[9]. The AUC-ROC and other performance indicators 
were calculated using the optimal cutoff points as deter-
mined in the development data and in DRESS data, both 
defined by Youden’s Index [18].

Simulation of prediction‑aided treatment
To evaluate the clinical utility of the flare predictions, we 
assessed the model’s potential impact on the number of 
flares and on the bDMARD dose used over 18 months. 
We simulated a new tapering strategy where the model’s 
predictions were used as a decision aid in the DGDO 
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arm of the DRESS trial. At every 3-monthly visit, the pre-
dicted risk of a flare was taken into account when decid-
ing to continue or to stop tapering. The predicted risk of 
flare was categorized into a high predicted risk (above or 
equal to the optimal cutoff point), or a low predicted risk 
(below the cutoff point). The simulation was based on the 
following assumptions:

1.	 If a flare occurred in the DRESS trial before the 
model predicted a high risk of flare, this flare also 
occurs in the simulation. The bDMARD dose is the 
same as in the trial. Thus, there is no impact of the 
predictions is observed in this case.

2.	 If the model predicted a high risk of flare in simu-
lation and no flare had occurred in the DRESS trial 
thus far, the bDMARD is not tapered further (kept at 
a constant dose). No flares occur in simulation dur-
ing the remaining follow-up, except for the scenario 
described in 4.

3.	 If a patient had completely discontinued the 
bDMARD in the DRESS trial when the model pre-
dicted a high predicted risk of flare, the bDMARD 
dose in simulation is increased to and kept at 50% of 
the full registered dose. This corresponds to the last 
tapering step. No flares occur during the remaining 
follow-up, except for the scenario described in 4.

4.	 If in the DRESS trial a flare occurred after the model 
predicted a high risk of flare and the bDMARD dose 
in DRESS was equal to or higher than the bDMARD 
dose in simulation, that flare also occurs in the simu-
lation. The bDMARD dose is equal to the DRESS 
trial during the remaining follow-up.

The number of flares occurring, the proportion of 
patients experiencing at least one flare, and the propor-
tion of the full registered dose were calculated. These 
were then compared between the simulation and the 
DGDO arm of the DRESS trial over 18 months. Con-
fidence intervals (CI) were calculated using 1000-fold 
bootstrapping. As there is no obvious optimum in the 
trade-off between the reduction in the number of flares 
and the increase in bDMARD dose, we evaluated the 
clinical impact of prediction-aided treatment for several 
cutoffs around the optimal cutoffs as defined by Youden’s 
Index [18].

Results
Patient characteristics
Of the total number of 5226 RA patients in the EHR data, 
there were 757 bDMARD courses in which LDA was 
recorded after at least 24 weeks of usage (Fig. 1). In 279 
bDMARD courses of 255 patients, sufficient data was 
available for model development (see the “Methods” sec-
tion). Data for smoking, erosive disease, concurrent and 
previous DMARDs, and glucocorticoids were of insuf-
ficient quality (> 50% missing data) and/or could not be 
(easily) extracted from the EHR. The median follow-up 
time of the included bDMARD courses was 21 months, 
and the mean bDMARD dose was 76.7% of the full dose. 
Table  1 displays general patient characteristics of the 
development data and the data from the DRESS trial used 
for external validation. Significant differences between 
the populations were observed for age, DAS28 at base-
line, the number of DAS28-measurements, flare rate, and 
bDMARD dose, among others.

Fig. 1  Selection of bDMARD courses from EHR data for model development. a Low disease activity was defined as a DAS28 (ESR or CRP) ≤ 3.2. b 
Based on the availability of at least two DAS28 measurements per year, bDMARD type and dose, disease duration, and seropositivity. bDMARD, 
biological disease-modifying antirheumatic drug; EHR, electronic health record; RA, rheumatoid arthritis
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Model development
The variables that were retained in the final prediction 
model and the corresponding hazard ratios are displayed 
in Table 2. The final model identified two latent DAS28-
trajectories, defined by a linear and a quadratic time coef-
ficient. Figure 2 shows the mean of these two trajectories 
(left), together with their respective time to flare (right). 

The course of disease activity in the class 2 DAS28-trajec-
tory shows an increase in disease activity over time and 
a shorter time to flare, compared to the class 1 DAS28-
trajectory. Variables that significantly increased the likeli-
hood of a flare were seropositivity, bDMARD dose < 50% 
and an increase in tender joint count at baseline (com-
pared to previous visit).

Table 1  Patient characteristics in data for model development and external validation

ACPA anti-citrullinated protein antibodies, bDMARD biological disease-modifying antirheumatic drug, CRP C-reactive protein, DAS28 disease activity score based on 28 
joint count, EHR electronic health record, ESR erythrocyte sedimentation rate, IQR interquartile range, RF rheumatoid factor, SD standard deviation, TJ(C)/SJ(C) tender/
swollen joint count, VAS GH an assessment of general health on a visual analog scale (0–100 mm)
a P-values based on T-test for normally distributed continuous data, Mann-Whitney U test for continuous non-normally distributed data, and χ2 test for nominal data
b In the development data, baseline is defined as the first DAS28 ≤ 3.2
c An increase in TJC and/or SJC (yes/no) at baseline relative to the previous TJC/SJC measurement

Characteristics Development data 
(n = 279)

DRESS data for external 
validation (n = 164)

P-value of 
differencea

General characteristics
  Age, mean in years (SD) 50.2 (17.1) 58.7 (9.9) < 0.01

  Female, N (%) 203 (72.8%) 105 (64%) 0.05

  BMI, median in kg/m2 (IQR) 25.4 (22.6–30.0) 26.8 (23.3–29.5) 0.22

  Height, mean in cm (SD) 170.4 (12.5) 172 (9.2) 0.15

  Weight, mean in kg (SD) 77.0 (17.2) 78.8 (15.5) 0.27

  Follow-up time, median in months (SD) 21 (2.0) 18.7 (1.6) < 0.01

RA characteristics
  Disease duration at start of bDMARD, median in years (IQR) 9.0 (5.0–16.5) 6.0 (2.7–12.7) 0.38

  Positivity for RF and/or ACPA, N (%) 236 (84.6%) 140 (85.4%) 0.83

Biological
  bDMARD type, N (%)

  Etanercept 77 (27.6%) 107 (65.2 %) < 0.01

    Infliximab 5 (1.8%) – –

    Adalimumab 113 (40.5%) 57(34.8%) 0.23

    Certolizumab 10 (3.6%) – –

    Golimumab 18 (6.5%) – –

    Tocilizumab 8 (2.9%) – –

    Sarilumab 2 (0.7%) – –

  Abatacept 37 (13.3%) – –

  Time from start bDMARD baseline, mean in weeks (SD)b 10 (7.7) 42.1 (29.1) < 0.01

  Prescribed dose during follow-up (mean, expressed as % of full dose) 76.7% 61.6% < 0.01

Disease activity
  DAS28 at baseline, mean (SD) 2.79 (1.34) 2.15 (0.70) < 0.01

  VAS GH at baseline, median (IQR) 30 (11–40) 20 (10–34) 0.76

  TJC at baseline, median (IQR) 0 (0–1) 0 (0–1) –

  SJC at baseline, median (IQR) 0 (0–1) 0 (0–1) –

  ESR at baseline, median in mm/hour (IQR) 7 (3–12) 13 (7–22) < 0.01

  CRP at baseline, median mg/ml (IQR) 2.7 (1.3–5.0) 3 (3–3) 0.22

  Increase in TJC (yes/no)c, N (%) 49 (17.6%) NA –

  Increase in SJC (yes/no)c, N (%) 28 (10.0%) NA –

  No. of DAS28 measurements, mean (SD) 6.1 (3.8) 7.3 (1.2) < 0.01

  Time between DAS28, mean in weeks (SD) 22.3 (12.3) 12.0 (5.4) < 0.01

  Flare rate (# flares per patient year) 0.47 0.62 < 0.01

  DAS28 measurement rate (#DAS28 measurements per patient year) 2.18 4.72 0.04
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Table 2  Variables of the final flare prediction model

ACPA anti-citrullinated protein antibody, bDMARD biological disease-modifying antirheumatic drug, DAS28 disease activity score based on 28-joint count, RF 
rheumatoid factor, TJ(C)/SJ(C) tender/swollen joint count, TNFi tumor necrosis factor inhibitor

In development data, baseline is defined as the first DAS28 ≤ 3.2 (low disease activity)
a In development data: time from start biological until DAS28 < 3.2 for the first time. In DRESS data: time from start biological until baseline visit
b An increase in TJC or SJC (yes/no) at baseline, compared to the previous DAS28 measurement

Parameter Hazard ratio (95% CI)

Linear time coefficient DAS28 trajectory latent class 1 1.04 (1.02–1.06)

Quadratic time coefficient DAS28 trajectory latent class 1 1.66 (0.42–6.55)

Linear time coefficient DAS28 trajectory latent class 2 1.14 (1.08–1.20)

Quadratic time coefficient DAS28 trajectory latent class 2 4.52 (3.83–5.33)

Time to reach stable low disease activity (weeks)a 0.97 (0.96–0.98)

DAS28 at baseline 1.18 (0.90–1.54)

Prescribed dose (% of standard dose) at baseline 1.21 (0.88–1.67)

SJ increase at baseline (yes/no)b 1.72 (0.94–3.17)

TJ increase at baseline (yes/no) b 2.07 (1.13–3.81)

Disease duration (years) at start of bDMARD 1.02 (0.99–1.05)

Seropositivity (RF and/or ACPA) 2.51 (1.39–4.53)

bDMARD TNFi type (yes/no) 0.90 (0.54–1.49)

bDMARD dose ≤50% of full registered dose (time-varying variable) 2.21 (1.73–2.82)

Fig. 2  Mean DAS28-trajectories of identified latent classes and their relation to the occurrence of a flare. A The mean course of the disease activity 
score (DAS28) over time in patients assigned to one of the two “latent trajectory classes.” In class 1 (n = 182), a stable low disease activity is observed, 
whereas patients in class 2 (n = 97) display an increasing disease activity over time. B The probability of remaining free from flares over time for 
patients assigned to one the “latent trajectory classes” for disease activity, as displayed on the left. Patients in class 2 display a shorter time to flare as 
compared to patients in class 1
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As the DAS28-trajectories represent the course of dis-
ease activity over time, this is a time-dependent variable. 
By default, only one continuous time-dependent variable 
can be included in a joint latent class model. In order to 
also add bDMARD dose as a second time-dependent var-
iable, it was dichotomized in < or ≥ 50% of the full regis-
tered dose.

Model validation
Predictive performance in cross-validation and external 
validation is summarized in Table 3. In cross-validation, 
the model achieved an AUC-ROC of 0.76 (CI 0.69–0.83). 
The optimal cutoff in the development data was at a 
predicted probability of flare of 14.3% within the next 
3  months. For external validation, sixteen patients were 
excluded from DRESS because of missing predictor infor-
mation. Furthermore, as the variable “increase in SJC/
TJC” was not available in the DRESS data, these were set 
to 0 (i.e. no increase) for the validation, with the rationale 
that patients that met the DRESS inclusion criteria had 
a stable low level of disease activity at baseline. Supple-
mentary Figure S1 shows the AUC-ROC of the model in 
external validation (0.68 (CI 0.62–0.73), see Supplemen-
tary Figure S2 for the calibration plot). The optimal cut-
off point in DRESS data was found to be at a predicted 
chance of flare of 31.5% within the next 3 months.

Because the model cannot truly function as a “joint” 
model at baseline, since no longitudinal information is 
yet available, we also explored the performance when 
removing baseline predictions. This indeed improved the 
AUC in external validation to 0.71 (CI 0.64-0.77, Supple-
mentary Figure S3 and Supplementary Table S1).

Simulation of prediction‑aided treatment
We assessed the potential clinical impact of the model 
on the number of flares and the amount of bDMARD 
dose reduction, when used as a decision aid within a 

DGDO strategy. The clinical impact of prediction-aided 
treatment in simulation was evaluated for cutoffs from 
15–45% in steps of 10% (Supplementary Table S2), and 
results were discussed to determine the optimal cutoff 
for clinical practice. A risk cutoff of 35% was deemed 
optimal, as this significantly reduced the number of flares 
per patient over 18 months from 1.21 (0.99–1.43) to 0.75 
(0.54–0.96), while retaining most of the bDMARD dose 
reduction (64% vs 54% of full registered dose used). See 
Table  4. When using this optimal cutoff of 35%, only 
1.0 flare occurred for each full dose that was tapered in 
the simulation of prediction-aided treatment, versus 2.0 
flares in the DRESS DGDO arm. Furthermore, in the 
DRESS routine care arm, each prevented flare (com-
pared with DRESS DGDO) came at a cost of 51% of a full 
bDMARD dose over 18 months, while this was only 22% 
in the simulated prediction-aided group. As the AUC-
ROC improved when the predictions at baseline were 
not taken into account, we explored the simulation of 
prediction-aided treatment when removing the baseline 
predictions. However, the simulation results were hardly 
influenced by this (Supplementary Table S3).

Discussion
The goal of this study was to develop and validate a flare 
prediction model to reduce the number of flares during 
bDMARD tapering, exclusively using data that can eas-
ily be obtained in routine care. Our simulation results 
show that the addition of our flare prediction model to a 
DGDO tapering strategy is both superior to routine care 
and to DGDO alone, when considering the ratio between 
the number of flares and amount of bDMARD dose 
reduction. To our knowledge, this is the first study not 
only developing a dynamic flare prediction model, but 
also performing an external validation and subsequent 
simulation of clinical impact in the context of bDMARD 
tapering.

Table 3  Predictive performance in cross validation and external validation

Results from the 5-fold cross-validation in development data are presented for an optimal cutoff point of 14.3% as determined with Youden’s index. The results from 
external validation in the DRESS trial [9] are presented for 2 different cutoff points: the optimal cutoff point from the development data (14.3%), and the optimal cutoff 
point in the DRESS data as determined by Youden’s index (31.5%). 95% confidence intervals are presented between brackets

AUC​ area under the curve

Cross validation (cutoff 14.3%) External validation (cutoff 14.3%) External 
validation 
(cutoff 31.5%)

AUC​ 0.76 (0.69–0.83) 0.68 (0.62–0.73) 0.68 (0.62–0.73)

Sensitivity (%) 86.1 (81.9–90.1) 73.2 (64.4–82.0) 58.8 (49.0–68.6)

Specificity (%) 66.5 (60.1–72.5) 52.0 (0.48–56.0) 68.7 (64.9–72.4)

Positive predictive value (%) 33.0 (29.3–38.5) 20.1 (15.9–24.3) 23.7 (18.3–29.0)

Negative predictive value (%) 96.2 (95.4–98.4) 92.1 (89.2–95.0) 91.0 (88.3–93.6)

Accuracy (%) 70.6 (65.6–75.6) 55.0 (51.2–58.7) 67.3 (63.6–70.8)
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As tapering bDMARDs is of great clinical interest, 
other studies have also investigated predictors in the con-
text of tapering. Several studies and systematic reviews 
have investigated the predictive value of biomarkers, 
serum drug levels, or PET-scans during bDMARD taper-
ing [12, 20–22]. However, none of these studies showed 
a clear predictive value of these markers. In addition, the 
study by Verhoef et al. showed that for a biomarker to be 
cost-effective during bDMARD tapering, it must be inex-
pensive and have high sensitivity and specificity [23]. If 
future studies do show a predictive value of (bio)mark-
ers during tapering, these can be included in the predic-
tion model. The added predictive value of such markers 
and their cost-effectiveness should then be assessed. 
An important advantage of the current model is that it 
only includes variables that are routinely collected in 
RA clinical practice, thereby enhancing feasibility and 
cost-effectiveness.

A recent review [13] focused on predictors for success-
ful discontinuation, rather than tapering, of bDMARDs. 
Similar to the current study, they found seropositiv-
ity, LDA, disease duration, and CRP/ESR to be possible 
predictors of value. In addition, they mention physical 
functioning and ultrasound measures as possible predic-
tors. However, the studies included in this review were 
often small and too heterogeneous to compare in meta-
analysis. Furthermore, only fixed baseline variables were 
included, rather than performing dynamic predictions 
using information over time.

Two studies have incorporated such dynamic vari-
ables to predict RA disease activity over time [24, 25]. 
The study by Norgeot et al. [24] found the Clinical Dis-
ease Activity Index (CDAI), CRP/ESR, glucocorticoid 
use, and other DMARD use to be important predictors. 
However, this study is not performed in the specific 
context of tapering bDMARDs. The model developed 

by Vodenčarević et  al. [25] does focus specifically on 
bDMARD tapering. However, this model is developed 
and validated on the clinical trial data of 41 patients 
only and may therefore be difficult to extrapolate to rou-
tine care. Both of these dynamic prediction models were 
developed using machine learning techniques. We have 
previously also explored the potential of a machine learn-
ing model similar to Vodenčarević et  al. [26]. However, 
we chose to pursue the joint latent class model as the per-
formance was similar, and the joint latent class model is 
more transparent regarding the DAS28-trajectories used 
and the effects of covariates in the model (i.e., providing 
hazard ratios).

A major unique strength of this study is that the mod-
el’s performance is assessed in external validation. There 
were several significant differences between the patient 
populations from routine care used for developing the 
model and the DRESS pragmatic trial data for exter-
nal validation regarding baseline characteristics, disease 
activity, and bDMARD treatment. However, despite 
these differences the model retained an adequate per-
formance in the external validation, indicating that these 
differences do not invalidate the model. Another strength 
is that the clinical impact is evaluated in simulation. In 
this simulation, successful tapering was not only defined 
by reaching a lower bDMARD dose, but also by the num-
ber of flares during tapering. Furthermore, our model 
was developed using easily obtainable parameters from 
routine care EHR data, rather than, e.g., clinical trial data 
or specific biomarkers [27].

The AUC in cross-validation and external validation 
(0.76 and 0.68, respectively) may be interpreted as only 
a moderate performance. However, the AUC may not be 
the most suitable measure to assess the model’s clinical 
utility. The added value in clinical practice is determined 
by the effects of prediction-aided treatment on the rate 

Table 4  Flares and bDMARD dose in simulation of prediction-aided treatment

bDMARD biological disease-modifying antirheumatic drug, DGDO disease activity-guided dose optimisation
a The difference in mean bDMARD dose divided by the difference in mean flares compared with DRESS [9] DGDO. This represents the increase in bDMARD dose that 
was needed to prevent a flare over 18 months for this tapering strategy
b The mean difference in the number of flares, divided by the mean difference in bDMARD dose, compared to routine care. This represents the number of extra flares 
that occurred for each full dose of bDMARD that is tapered compared to routine care over 18 monhts using this tapering strategy

DRESS routine care Simulation (cutoff: 35%) DRESS DGDO

Mean no. of flares (95% CI) 0.48 (0.24–0.72) 0.75 (0.54–0.96) 1.21 (0.99–1.43)

Decrease in flares compared to DRESS DGDO (95% CI) 0.73 (0.40–1.0) 0.46 (0.16–0.74) –

Mean bDMARD dose (95% CI) 0.91 (0.86–0.96) 0.64 (0.61–0.68) 0.54 (0.50–0.58)

Increase in bDMARD dose compared to DRESS DGDO (95% CI) 0.37 (0.31–0.44) 0.10 (0.05–0.16) –

Percentage of patients flaring (95% CI) 27% (15–40) 45% (36–54) 71% (63–79)

Increase in bDMARD dose per flare prevented vs. DRESS DGDOa (95% CI) 0.51 (0.44–0.59) 0.22 (0.15–0.32) –

Number of extra flares per full bDMARD dose saved vs. routine careb (95% CI) – 1.0 (0.3–1.8) 2.0 (1.4–2.6)
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of flares and the amount of bDMARD dose reduction, 
when compared to the available alternatives. The cur-
rently existing alternatives are either continuing the 
bDMARD at full dose or tapering until a flare occurs 
in a trial-and-error approach. Our simulation results 
show that prediction-aided treatment is superior to both 
these alternatives regarding the ratio between the num-
ber of flares and the amount of bDMARD dose reduc-
tion. Therefore, prediction-aided treatment may present 
the best available bDMARD tapering strategy. This is 
currently being investigated in the PATIO randomized 
controlled clinical trial (Dutch Trial Register number 
NL9798).

Interestingly, the AUC of the prediction model 
improved in external validation from 0.68 to 0.71 when 
baseline predictions were removed. This is likely because 
the model can only function as a “joint” model when lon-
gitudinal information is available. This effect on AUC was 
also observed in the development data, but due to the rel-
ative overrepresentation of baseline visits in the DRESS 
data compared to the development data, this was less 
pronounced. As the removal of baseline predictions had 
almost no effect on the simulation of clinical impact, we 
chose to retain these predictions. Including disease activ-
ity measures prior to the start of tapering could poten-
tially improve the performance of our model, as this 
would ensure that longitudinal information is available at 
baseline.

A challenge in this study was the limited data qual-
ity regarding the frequency of DAS28 measurements 
in the development data. This might also have con-
tributed to the different flare rates and resulting dis-
crepancy between the optimal cutoff points in the 
development data and external validation data from 
the DRESS trial. When implementing a prediction-
aided bDMARD tapering strategy in clinical practice 
or clinical studies, a treat-to-target (T2T) strategy with 
regular (e.g., 3 monthly) DAS28 measurements should 
be used, in line with EULAR recommendations [5]. 
As the DAS28 measurement frequency in the DRESS 
trial best reflects these recommendations, the optimal 
cutoff point found in simulation (i.e. 35%) is likely the 
most suitable for implementation of the model in clini-
cal practice.

Besides the DAS28 measurements, several other 
parameters were also difficult to extract as structured 
data from the EHR, such as smoking, concurrent csD-
MARDs, and erosiveness of disease. We explored imputa-
tion to increase the amount of these data points, but this 
did not improve the model’s performance in cross-valida-
tion. Improved registration of these parameters and the 

optimization of free text mining techniques could allow 
for future inclusion of these parameters in model devel-
opment and possibly a better performance. Importantly, 
the results from external validation are not biased by 
missing data, since the DRESS data had a standard meas-
urement frequency and very few data missing on disease 
activity. Therefore, we think our simulation should be an 
accurate representation of the potential clinical impact of 
using the models predictions as an decision aid added to 
a DGDO strategy.

Since prediction-aided treatment could reduce the 
number of flares during bDMARD tapering, patients 
and physicians may be more willing to start tapering 
with such a prediction model than without [28]. Fur-
thermore, our prediction model can be used as an add-
on to DGDO, retains most of the bDMARD reduction 
as attained by DGDO, and is a low cost intervention. 
Therefore, the model might prove to be an even more 
cost-effective strategy than DGDO alone [10]. The 
clinical implementation may be relatively straightfor-
ward, as it uses only predictors usually available in the 
EHR.

Conclusions
In conclusion, we developed and validated a dynamic 
prediction model to predict the risk of a flare occur-
ring within 3 months during a bDMARD tapering strat-
egy. In simulation, we showed that a prediction-aided 
treatment strategy has the potential to significantly 
reduce the number of flares, while maintaining most 
of the bDMARD dose reduction. As this simulation is 
inevitably based on certain assumptions, we are cur-
rently investigating the clinical impact of prediction 
aided treatment in the PATIO randomized controlled 
trial. The current study and the PATIO-trial provide 
the next step towards the successful implementation of 
personalized medicine using clinical decision support 
systems.
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Additional file 1: Supplementary Figure S1. Receiver operating char‑
acteristic (ROC) curve in external validation. ROC-curve of the model in 
external validation in data of the Dose Reduction Strategy of Subcutane‑
ous TNF inhibitors (DRESS) trial [9].

Additional file 2: Supplementary Figure S2. Calibration plot of flare pre‑
diction model including baseline predictions Calibration plot in external 
DRESS-data [9]. Patients were grouped based on their predicted probabil‑
ity from lowest to highest predicted 3-monthly risk of flare (x-axis) using 
the median, 25th and 75th percentile. On the y-axis these groups are 
compared with the observed frequency of flare within 3 months. Perfectly 
calibrated predictions would be expected to be at the diagonal.

Additional file 3: Supplementary Figure S3. AUC and calibration plot 
without baseline predictions. A. Receiver operator characteristic (ROC)-
curve of external validation of the flare prediction model in DRESS data 
[9], where baseline predictions are removed. The rationale is that the 
prediction model cannot truly function as a ‘joint’ model at baseline, as no 
longitudinal data is available. B: Calibration plot in DRESS-data, excluding 
baseline predictions. Patients were grouped based on their predicted 
probability from lowest to highest predicted 3-monthly risk of flare (x-axis) 
using the median, 25th and 75th percentile. On the y-axis these groups 
are compared with the observed frequency of flare within 3 months. 
Perfectly calibrated predictions would be expected to be at the diagonal. 
AUC: Area Under the Curve.

Additional file 4: Supplementary Table S1. Predictive performance 
without baseline predictions in DRESS data. 95% confidence intervals are 
presented between brackets. The results from external validation in the 
DRESS trial [9] without baseline predictions. The rationale for leaving out 
baseline predictions is that the prediction model cannot truly function as 
a ‘joint’ model at baseline, as no longitudinal data is available. The results 
for 2 different cutoff points are presented: the optimal cutoff point from 
the development data (14.3%) and the optimal cutoff point in the DRESS 
data as determined by Youden’s index (31.5%). AUC: Area under the curve.

Additional file 5: Supplementary Table S2. Simulation results for differ‑
ent cutoff points (baseline predictions included). 95% confidence intervals 
are presented between brackets. a. The mean difference in bDMARD 
dose divided by the mean number of flares compared with the DRESS [9] 
DGDO arm. The number therefore represents the increase in bDMARD 
dose that was needed to prevent a flare for this specific tapering strategy. 
b. The mean difference in the number of flares, divided by the mean 
difference in bDMARD dose, compared to routine care. The ratio thus 
represents the number of extra flares that occurred for each extra full dose 
of bDMARD that is tapered compred to routine care over 18 monhts using 
this specific tapering strategy. bDMARD: biological disease-modifying 
antirheumatic drug, DGDO: disease activity guided dose optimisation.

Additional file 6: Supplementary Table S3. Simulation results with and 
without baseline predictions. 95% confidence intervals are presented 
between brackets. The results from external validation in the DRESS trial 
[9] without baseline predictions, for the optimal cutoffpoint of 35% as 
determined in simulation (see Supplementary Table S2). The rationale 
for leaving out baseline predictions is that the prediction model cannot 
truly function as a ‘joint’ model at baseline, as no longitudinal data is 
available. a. The mean difference in bDMARD dose divided by the mean 
number of flares compared with the DRESS DGDO arm. The number 
therefore represents the increase in bDMARD dose that was needed to 
prevent a flare for this specific tapering strategy. b. The mean difference 
in the number of flares, divided by the mean difference in bDMARD dose, 
compared to routine care. The ratio thus represents the number of extra 
flares that occurred for each extra full dose of bDMARD that is tapered 
compred to routine care over 18 monhts using this specific tapering strat‑
egy. bDMARD: biological disease-modifying antirheumatic drug, DGDO: 
disease activity guided dose optimisation.
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