Skip to main content
  • Oral presentation
  • Open access
  • Published:

Autoimmune arthritis caused by altered thymic T-cell selection due to a mutation of the ZAP-70 gene

SKG mouse is a murine model of autoimmune arthritis. A spontaneous point mutation of the gene encoding an SH2 domain of the ζ-associated protein of 70 kDa gene (ZAP-70), a key signal transduction molecule in T cells, causes chronic autoimmune arthritis in SKG mice that resembles human RA in many aspects. Altered signal transduction from T-cell antigen receptor through the aberrant ZAP-70 changes the thresholds of T cells to thymic selection, leading to the positive selection of otherwise negatively selected autoimmune T cells.

Based on the finding that the skg-mutation of ZAP-70 causes autoimmune arthritis, we then examined how attenuated TCR signaling affects the spectrum of autoimmune diseases. In a set of mice with the mutation, the amount of ZAP-70 protein as well as its tyrosine phosphorylation upon TCR stimulation decreased from +/+, skg/+, skg/skg, to skg/− mice in a stepwise manner. The reduction resulted in graded alterations of thymic positive and negative selection of self-reactive T cells and Foxp3+ natural regulatory T cells (Tregs) and their respective functions. Consequently, skg/− mice spontaneously developed autoimmune arthritis even in a microbially clean environment, whereas skg/skg mice required stimulation through innate immunity for disease manifestation. After Treg depletion, organ-specific autoimmune diseases, especially autoimmune gastritis, predominantly developed in +/+, at a lesser incidence in skg/+, but not in skg/skg BALB/c mice, which suffered from other autoimmune diseases, especially autoimmune arthritis. In correlation with this change, gastritis-mediating TCR transgenic T cells were positively selected in +/+, less in skg/+, but not in skg/skg BALB/c mice. Similarly, on the genetic background of diabetes-prone NOD mice, diabetes spontaneously developed in +/+, at a lesser incidence in skg/+, but not in skg/skg mice, which instead succumbed to arthritis. Thus, the graded attenuation of TCR signaling alters the repertoire and the function of autoimmune T cells and natural Tregs in a progressive manner. It also changes the dependency of disease development on environmental stimuli. These findings collectively provide a model of how genetic anomaly of T cell signaling contributes to the development of autoimmune disease.

Author information

Authors and Affiliations

Authors

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article

Ito, Y., Sakaguchi, S. Autoimmune arthritis caused by altered thymic T-cell selection due to a mutation of the ZAP-70 gene. Arthritis Res Ther 14 (Suppl 1), O10 (2012). https://doi.org/10.1186/ar3565

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/ar3565

Keywords