Background
Lupus nephritis affects 30 to 70% of systemic lupus erythematosus (SLE) patients and its treatment remains insufficiently effective and excessively toxic. Although biomarkers for nephritis are being identified there is still no reliable way of predicting an impending renal flare or determining which patients will respond to therapy. Because human renal tissue cannot be obtained sequentially during remission and relapse, animal models are often used to study progression of lupus nephritis. To elucidate the molecular mechanisms involved in renal inflammation during the progression, remission and relapse of nephritis we performed a transcriptome analysis of renal tissue from two murine lupus models, NZB/WF1 mice that develop proliferative glomerulonephritis and NZM2410 mice that develop glomerulosclerosis with minimal inflammation.