Skip to content


  • Meeting abstract
  • Open Access

Rheumatoid arthritis – class prediction by autoreactivity profiles

  • 1,
  • 1,
  • 1,
  • 1,
  • 2,
  • 3,
  • 1,
  • 4,
  • 5,
  • 6 and
  • 1
Arthritis Res Ther20035 (Suppl 1) :1

  • Received: 14 January 2003
  • Published:


  • Rheumatoid Arthritis
  • Rheumatoid Arthritis Patient
  • Synovial Fluid
  • Rheumatic Disease
  • Citrullinated

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA.

Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA).

No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months).

For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients.

Authors’ Affiliations

Department of Rheumatology & Clinical Immunology, Charité University Clinic, Berlin, Germany
MPI Biochemistry, Munich, Germany
Clinic for Rheumatology Berlin Buch, Berlin, Germany
Rheumaklinik, Bad Liebenwerda, Germany
Department of Biochemistry, University of Nijmegen, The Netherlands
Divison of Rhematology, Department Internal Medicine III, Vienna General Hospital, Austria


© The Author(s) 2003