Lazner F, Gowen M, Pavasovic D, Kola I. Osteopetrosis and osteoporosis: two sides of the same coin. Hum Mol Genet. 1999;8(10):1839–46.
CAS
PubMed
Google Scholar
Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96.
CAS
PubMed
Google Scholar
Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12(1):17–25.
CAS
PubMed
Google Scholar
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. doi:10.1038/nature01658.
CAS
PubMed
Google Scholar
Scott DL, Pugner K, Kaarela K, et al. The links between joint damage and disability in rheumatoid arthritis. Rheumatology (Oxford). 2000;39(2):122–32.
CAS
Google Scholar
Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford). 2006;45(6):669–75.
CAS
Google Scholar
Goldring SR. Pathogenesis of bone erosions in rheumatoid arthritis. Curr Opin Rheumatol. 2002;14(4):406–10.
PubMed
Google Scholar
Bromley M, Woolley DE. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum. 1984;27(9):968–75.
CAS
PubMed
Google Scholar
Goldring SR. Inflammatory mediators as essential elements in bone remodeling. Calcif Tissue Int. 2003;73(2):97–100. doi:10.1007/s00223-002-1049-y.
CAS
PubMed
Google Scholar
Polzer K, Diarra D, Zwerina J, Schett G. Inflammation and destruction of the joints--the wnt pathway. Joint Bone Spine. 2008;75(2):105–7. doi:10.1016/j.jbspin.2007.10.005.
CAS
PubMed
Google Scholar
Schett G. Cells of the synovium in rheumatoid arthritis. Osteoclasts Arthritis Res Ther. 2007;9(1):203.
PubMed
Google Scholar
Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012;11(3):234–50. doi:10.1038/nrd3669.
CAS
PubMed
Google Scholar
Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8(3):147–59.
CAS
PubMed
Google Scholar
Murakami T, Yamamoto M, Ono K, et al. Transforming growth factor-beta1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. Biochem Biophys Res Commun. 1998;252(3):747–52.
CAS
PubMed
Google Scholar
Takai H, Kanematsu M, Yano K, et al. Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem. 1998;273(42):27091–6.
CAS
PubMed
Google Scholar
Quinn JM, Itoh K, Udagawa N, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res. 2001;16(10):1787–94. doi:10.1359/jbmr.2001.16.10.1787.
CAS
PubMed
Google Scholar
Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9 Suppl 1:S1.
PubMed
PubMed Central
Google Scholar
Mizukami J, Takaesu G, Akatsuka H, et al. Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol. 2002;22(4):992–1000.
CAS
PubMed
PubMed Central
Google Scholar
Darnay BG, Ni J, Moore PA, Aggarwal BB. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. identification of a novel TRAF6 interaction motif. J Biol Chem. 1999;274(12):7724–31.
CAS
PubMed
Google Scholar
Yasui T, Kadono Y, Nakamura M, et al. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res. 2011;26(7):1447–56. doi:10.1002/jbmr.357.
CAS
PubMed
Google Scholar
Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7(4):292–304.
CAS
PubMed
Google Scholar
Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3(6):889–901.
CAS
PubMed
Google Scholar
Wong BR, Besser D, Kim N, et al. TRANCE, a TNF family member, activates akt/PKB through a signaling complex involving TRAF6 and c-src. Mol Cell. 1999;4(6):1041–9.
CAS
PubMed
Google Scholar
Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol. 2013;2(1):47–63. doi:10.1002/wdev.86.
CAS
PubMed
Google Scholar
Xu P, Liu J, Derynck R. Post-translational regulation of TGF-beta receptor and smad signaling. FEBS Lett. 2012;586(14):1871–84. doi:10.1016/j.febslet.2012.05.010.
CAS
PubMed
PubMed Central
Google Scholar
de Gorter DJJ, van Bezooijen RL, ten Dijke P. Bone morphogenetic proteins and their receptors. eLS. 2001. doi:10.1002/9780470015902.a0002330.pub3.
Google Scholar
Wrana JL. Signaling by the TGFbeta superfamily. Cold Spring Harb Perspect Biol. 2013;5(10):a011197. doi:10.1101/cshperspect.a011197.
PubMed
PubMed Central
Google Scholar
ten Dijke P, Hill CS. New insights into TGF-β–Smad signalling. Trends Biochem Sci. 2004;29(5):265–73.
PubMed
Google Scholar
Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30. doi:10.1038/nrm3434.
CAS
PubMed
PubMed Central
Google Scholar
Ebisawa T, Fukuchi M, Murakami G, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001;276(16):12477–80. doi:10.1074/jbc.C100008200.
CAS
PubMed
Google Scholar
Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6(6):1365–75.
CAS
PubMed
Google Scholar
Meng XM, Tang PM, Li J, Lan HY. TGF-beta/smad signaling in renal fibrosis. Front Physiol. 2015;6:82. doi:10.3389/fphys.2015.00082.
PubMed
PubMed Central
Google Scholar
Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1 to the bone. Endocr Rev. 2005;26(6):743–74.
CAS
PubMed
Google Scholar
Gonzalo-Gil E, Galindo-Izquierdo M. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis. Reumatol Clin. 2014;10(3):174–9. doi:10.1016/j.reuma.2014.01.009.
PubMed
Google Scholar
Pelton RW, Saxena B, Jones M, et al. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol. 1991;115(4):1091–105.
CAS
PubMed
Google Scholar
Thompson NL, Flanders KC, Smith JM, et al. Expression of transforming growth factor-beta 1 in specific cells and tissues of adult and neonatal mice. J Cell Biol. 1989;108(2):661–9.
CAS
PubMed
Google Scholar
Fuller K, Lean JM, Bayley KE, et al. A role for TGFbeta(1) in osteoclast differentiation and survival. J Cell Sci. 2000;113(Pt 13):2445–53.
CAS
PubMed
Google Scholar
Yan T, Riggs B, Boyle W, Khosla S. Regulation of osteoclastogenesis and RANK expression by TGF-β1. J Cell Biochem. 2001;83(2):320–5.
CAS
PubMed
Google Scholar
Omata Y, Yasui T, Hirose J, et al. Genomewide comprehensive analysis reveals critical cooperation between smad and c-fos in RANKL-induced osteoclastogenesis. J Bone Miner Res. 2015;30(5):869–77. doi:10.1002/jbmr.2418.
CAS
PubMed
Google Scholar
Gingery A, Bradley EW, Pederson L, et al. TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res. 2008;314(15):2725–38. doi:10.1016/j.yexcr.2008.06.006.
CAS
PubMed
PubMed Central
Google Scholar
Szekanecz Z, Haines GK, Harlow LA, et al. Increased synovial expression of transforming growth factor (TGF)-beta receptor endoglin and TGF-beta 1 in rheumatoid arthritis: Possible interactions in the pathogenesis of the disease. Clin Immunol Immunopathol. 1995;76(2):187–94.
CAS
PubMed
Google Scholar
Brennan FM, Chantry D, Turner M, et al. Detection of transforming growth factor-beta in rheumatoid arthritis synovial tissue: Lack of effect on spontaneous cytokine production in joint cell cultures. Clin Exp Immunol. 1990;81(2):278–85.
CAS
PubMed
PubMed Central
Google Scholar
Kuruvilla AP, Shah R, Hochwald GM, et al. Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A. 1991;88(7):2918–21.
CAS
PubMed
PubMed Central
Google Scholar
Park MJ, Park HS, Cho ML, et al. Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of treg/Th17 cells and osteoclastogenesis. Arthritis Rheum. 2011;63(6):1668–80. doi:10.1002/art.30326.
CAS
PubMed
Google Scholar
Sancho D, Gomez M, Viedma F, et al. CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis. J Clin Invest. 2003;112(6):872–82. doi:10.1172/JCI19112.
CAS
PubMed
PubMed Central
Google Scholar
Gonzalo-Gil E, Criado G, Santiago B, et al. Transforming growth factor (TGF)-beta signalling is increased in rheumatoid synovium but TGF-beta blockade does not modify experimental arthritis. Clin Exp Immunol. 2013;174(2):245–55. doi:10.1111/cei.12179.
CAS
PubMed
PubMed Central
Google Scholar
Fava RA, Olsen NJ, Postlethwaite AE, et al. Transforming growth factor beta 1 (TGF-beta 1) induced neutrophil recruitment to synovial tissues: Implications for TGF-beta-driven synovial inflammation and hyperplasia. J Exp Med. 1991;173(5):1121–32.
CAS
PubMed
Google Scholar
Wahl SM, Allen JB, Costa GL, et al. Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta. J Exp Med. 1993;177(1):225–30.
CAS
PubMed
Google Scholar
Cheon H, Yu SJ, Yoo DH, et al. Increased expression of pro-inflammatory cytokines and metalloproteinase-1 by TGF-beta1 in synovial fibroblasts from rheumatoid arthritis and normal individuals. Clin Exp Immunol. 2002;127(3):547–52.
CAS
PubMed
PubMed Central
Google Scholar
Sakuma M, Hatsushika K, Koyama K, et al. TGF-beta type I receptor kinase inhibitor down-regulates rheumatoid synoviocytes and prevents the arthritis induced by type II collagen antibody. Int Immunol. 2007;19(2):117–26.
CAS
PubMed
Google Scholar
Stanford SM, Aleman Muench GR, Bartok B, et al. TGFbeta responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Ann Rheum Dis. 2016;75(1):295–302. doi:10.1136/annrheumdis-2014-205790.
CAS
PubMed
Google Scholar
Lubberts E. IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis? Cytokine. 2008;41(2):84–91.
CAS
PubMed
Google Scholar
Gutcher I, Donkor MK, Ma Q, et al. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity. 2011;34(3):396–408.
CAS
PubMed
PubMed Central
Google Scholar
Wakkach A, Rouleau M, Blin-Wakkach C. Osteoimmune interactions in inflammatory bowel disease: Central role of bone marrow Th17 TNFα cells in osteoclastogenesis. Front Immunol. 2015;6:640.
PubMed
PubMed Central
Google Scholar
Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11(7):415–29.
CAS
PubMed
Google Scholar
Lubberts E. Role of T lymphocytes in the development of rheumatoid arthritis. implications for treatment. Curr Pharm Des. 2015;21(2):142–6.
CAS
PubMed
Google Scholar
Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.
CAS
PubMed
Google Scholar
Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17 T helper cells. Cell. 2006;126(6):1121–33.
CAS
PubMed
Google Scholar
Laurence A, O’Shea JJ. TH-17 differentiation: of mice and men. Nat Immunol. 2007;8(9):903–5.
CAS
PubMed
Google Scholar
Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.
CAS
PubMed
Google Scholar
Adamopoulos IE, Bowman EP. Immune regulation of bone loss by Th17 cells. Arthritis Res Ther. 2008;10(5):1.
Google Scholar
Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89.
CAS
PubMed
Google Scholar
McGeachy MJ, Cua DJ. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol. 2007;19(6):372–6.
CAS
PubMed
Google Scholar
Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep. 2009;11(5):365–70.
CAS
PubMed
PubMed Central
Google Scholar
Chung Y, Dong C. Don’t leave home without it: The IL-23 visa to TH-17 cells. Nat Immunol. 2009;10(3):236–8.
CAS
PubMed
Google Scholar
Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278(3):1910–4. doi:10.1074/jbc.M207577200.
CAS
PubMed
Google Scholar
Lee Y, Awasthi A, Yosef N, et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol. 2012;13(10):991–9.
CAS
PubMed
PubMed Central
Google Scholar
Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008;8(5):337–48.
CAS
PubMed
Google Scholar
Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673–82.
CAS
PubMed
PubMed Central
Google Scholar
Pene J, Chevalier S, Preisser L, et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol. 2008;180(11):7423–30.
CAS
PubMed
Google Scholar
Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345–52. doi:10.1172/JCI5703.
CAS
PubMed
PubMed Central
Google Scholar
Jovanovic DV, Di Battista JA, Martel-Pelletier J, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998;160(7):3513–21.
CAS
PubMed
Google Scholar
Fischer JA, Hueber AJ, Wilson S, et al. Combined inhibition of tumor necrosis factor α and Interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015;67(1):51–62.
CAS
PubMed
Google Scholar
Zwerina K, Koenders M, Hueber A, et al. Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the t-cell balance. Eur J Immunol. 2012;42(2):413–23.
CAS
PubMed
Google Scholar
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90. doi:10.1038/387083a0.
CAS
PubMed
Google Scholar
McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997;94(23):12457–61.
CAS
PubMed
PubMed Central
Google Scholar
Shelton GD, Engvall E. Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene. Neuromuscul Disord. 2007;17(9-10):721–2.
PubMed
Google Scholar
Mosher DS, Quignon P, Bustamante CD, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007;3(5), e79.
PubMed
PubMed Central
Google Scholar
Bialek P, Parkington J, Warner L, et al. Mice treated with a myostatin/GDF-8 decoy receptor, ActRIIB-fc, exhibit a tremendous increase in bone mass. Bone. 2008;42:S46.
Google Scholar
Kellum E, Starr H, Arounleut P, et al. Myostatin (GDF-8) deficiency increases fracture callus size, sox-5 expression, and callus bone volume. Bone. 2009;44(1):17–23. doi:10.1016/j.bone.2008.08.126.
CAS
PubMed
Google Scholar
Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002;17(3):513–20. doi:10.1359/jbmr.2002.17.3.513.
CAS
PubMed
Google Scholar
Lee SJ. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol. 2004;20:61–86. doi:10.1146/annurev.cellbio.20.012103.135836.
CAS
PubMed
Google Scholar
Huang Z, Chen X, Chen D. Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation. Cell Signal. 2011;23(9):1441–6. doi:10.1016/j.cellsig.2011.05.003.
CAS
PubMed
Google Scholar
Bradley L, Yaworsky PJ, Walsh FS. Myostatin as a therapeutic target for musculoskeletal disease. Cell Mol Life Sci. 2008;65(14):2119–24. doi:10.1007/s00018-008-8077-3.
CAS
PubMed
Google Scholar
Zhu X, Topouzis S, Liang LF, Stotish RL. Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine. 2004;26(6):262–72. doi:10.1016/j.cyto.2004.03.007.
CAS
PubMed
Google Scholar
Dankbar B, Fennen M, Brunert D, et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med. 2015;21(9):1085–90. doi:10.1038/nm.3917.
CAS
PubMed
Google Scholar
Keffer J, Probert L, Cazlaris H, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991;10(13):4025–31.
CAS
PubMed
PubMed Central
Google Scholar
Ikenoue T, Jingushi S, Urabe K, et al. Inhibitory effects of activin-A on osteoblast differentiation during cultures of fetal rat calvarial cells. J Cell Biochem. 1999;75(2):206–14. doi:10.1002/(SICI)1097-4644(19991101)75:23.0.CO;2-T.
CAS
PubMed
Google Scholar
Fuller K, Bayley KE, Chambers TJ. Activin A is an essential cofactor for osteoclast induction. Biochem Biophys Res Commun. 2000;268(1):2–7. doi:10.1006/bbrc.2000.2075.
CAS
PubMed
Google Scholar
Ota F, Maeshima A, Yamashita S, et al. Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2003;48(9):2442–9. doi:10.1002/art.11249.
CAS
PubMed
Google Scholar
Soler Palacios B, Estrada-Capetillo L, Izquierdo E, et al. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile. J Pathol. 2015;235(3):515–26. doi:10.1002/path.4466.
CAS
PubMed
Google Scholar
Murase Y, Okahashi N, Koseki T, et al. Possible involvement of protein kinases and Smad2 signaling pathways on osteoclast differentiation enhanced by activin A. J Cell Physiol. 2001;188(2):236–42.
CAS
PubMed
Google Scholar
Sugatani T, Alvarez UM, Hruska KA. Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors. J Cell Biochem. 2003;90(1):59–67. doi:10.1002/jcb.10613.
CAS
PubMed
Google Scholar
Gaddy-Kurten D, Coker JK, Abe E, Jilka RL, Manolagas SC. Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures. Endocrinology. 2002;143(1):74–83. doi:10.1210/endo.143.1.8580.
CAS
PubMed
Google Scholar
Sakai R, Miwa K, Eto Y. Local administration of activin promotes fracture healing in the rat fibula fracture model. Bone. 1999;25(2):191–6.
CAS
PubMed
Google Scholar
Vallet S, Mukherjee S, Vaghela N, et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A. 2010;107(11):5124–9. doi:10.1073/pnas.0911929107.
CAS
PubMed
PubMed Central
Google Scholar
Chantry AD, Heath D, Mulivor AW, et al. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner Res. 2010;25(12):2633–46. doi:10.1002/jbmr.142.
PubMed
Google Scholar
Eijken M, Swagemakers S, Koedam M, et al. The activin A-follistatin system: Potent regulator of human extracellular matrix mineralization. FASEB J. 2007;21(11):2949–60.
PubMed
Google Scholar
Tsuchida K, Nakatani M, Uezumi A, et al. Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J. 2008;55(1):11–21.
CAS
PubMed
Google Scholar
Fowler TW, Kamalakar A, Akel NS, et al. Activin A inhibits RANKL-mediated osteoclast formation, movement and function in murine bone marrow macrophage cultures. J Cell Sci. 2015;128(4):683–94. doi:10.1242/jcs.157834.
CAS
PubMed
PubMed Central
Google Scholar
Hatsell SJ, Idone V, Wolken DM, et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med. 2015;7(303):303ra137. doi:10.1126/scitranslmed.aac4358.
PubMed
Google Scholar
Hino K, Ikeya M, Horigome K, et al. Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc Natl Acad Sci U S A. 2015;112(50):15438–43. doi:10.1073/pnas.1510540112.
CAS
PubMed
PubMed Central
Google Scholar
de Gorter, David Jan Jozef, Sánchez-Duffhues G, ten Dijke P. Promiscuous signaling of ligands via mutant ALK2 in fibrodysplasia ossificans progressiva. Recept Clin Invest. 2016;3(2):e1356. doi:10.14800/rci.1356.
Yano M, Kawao N, Okumoto K, et al. Fibrodysplasia ossificans progressiva-related activated activin-like kinase signaling enhances osteoclast formation during heterotopic ossification in muscle tissues. J Biol Chem. 2014;289(24):16966–77. doi:10.1074/jbc.M113.526038.
CAS
PubMed
PubMed Central
Google Scholar
Kasperkovitz PV, Timmer TC, Smeets TJ, et al. Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis show the imprint of synovial tissue heterogeneity: evidence of a link between an increased myofibroblast-like phenotype and high-inflammation synovitis. Arthritis Rheum. 2005;52(2):430–41. doi:10.1002/art.20811.
PubMed
Google Scholar
El-Gendi SS, Moniem AE, Tawfik NM, et al. Value of serum and synovial fluid activin A and inhibin A in some rheumatic diseases. Int J Rheum Dis. 2010;13(3):273–9. doi:10.1111/j.1756-185X.2010.01532.x.
PubMed
Google Scholar
Sierra-Filardi E, Puig-Kroger A, Blanco FJ, et al. Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood. 2011;117(19):5092–101. doi:10.1182/blood-2010-09-306993.
CAS
PubMed
Google Scholar
Dong F, He X, Activin A. A potential therapeutic target for characterizing and stopping joint pain early in rheumatoid arthritis patients. Inflammation. 2014;37(1):170–6. doi:10.1007/s10753-013-9727-7.
PubMed
Google Scholar
Tunyogi-Csapo M, Kis-Toth K, Radacs M, et al. Cytokine-controlled RANKL and osteoprotegerin expression by human and mouse synovial fibroblasts: fibroblast-mediated pathologic bone resorption. Arthritis Rheum. 2008;58(8):2397–408. doi:10.1002/art.23653.
CAS
PubMed
Google Scholar
Danks L, Komatsu N, Guerrini MM, et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 2016;75(6):1187–95. doi:10.1136/annrheumdis-2014-207137.
PubMed
Google Scholar