Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170:427–35. https://doi.org/10.2353/ajpath.2007.060834.
Article
CAS
PubMed Central
PubMed
Google Scholar
Roodman GD. Cell biology of the osteoclast. Exp Hematol. 1999;27:1229–41. https://doi.org/10.1016/S0301-472X(99)00061-2.
Article
CAS
PubMed
Google Scholar
Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273:1236–8. https://doi.org/10.1126/science.273.5279.1236.
Article
CAS
PubMed
Google Scholar
Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999;14:1654–63. https://doi.org/10.1359/jbmr.1999.14.10.1654.
Article
CAS
PubMed
Google Scholar
Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA. 1998;95:13453–8. https://doi.org/10.1073/pnas.95.23.13453.
Article
CAS
PubMed Central
PubMed
Google Scholar
Delaissé J-M, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech. 2003;61:504–13. https://doi.org/10.1002/jemt.10374.
Article
PubMed
Google Scholar
Everts V, Delaissé JM, Korper W, Niehof A, Vaes G, Beertsen W. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases. J Cell Physiol. 1992;150:221–31. https://doi.org/10.1002/jcp.1041500202.
Article
CAS
PubMed
Google Scholar
Henriksen K, Sørensen MG, Nielsen RH, Gram J, Schaller S, Dziegiel MH, et al. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. J Bone Miner Res. 2006;21:58–66. https://doi.org/10.1359/JBMR.050905.
Article
CAS
PubMed
Google Scholar
Blaney Davidson EN, Vitters EL, van der Kraan PM, van den Berg WB. Expression of transforming growth factor-β (TGFβ) and the TGFβ signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis. 2006;65:1414–21. https://doi.org/10.1136/ard.2005.045971.
Article
CAS
PubMed
Google Scholar
Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13:156–63. https://doi.org/10.1038/nm1538.
Article
CAS
PubMed
Google Scholar
Schett G, Hayer S, Zwerina J, Redlich K, Smolen JS. Mechanisms of Disease: the link between RANKL and arthritic bone disease. Nat Clin Pract Rheumatol. 2005;1:47–54. https://doi.org/10.1038/ncprheum0036.
Article
CAS
PubMed
Google Scholar
Schett G, Stolina M, Bolon B, Middleton S, Adlam M, Brown H, et al. Analysis of the kinetics of osteoclastogenesis in arthritic rats. Arthritis Rheum. 2005;52:3192–201. https://doi.org/10.1002/art.21343.
Article
PubMed
Google Scholar
Stolina M, Adamu S, Ominsky M, Dwyer D, Asuncion F, Geng Z, et al. RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J Bone Miner Res. 2005;20:1756–65. https://doi.org/10.1359/JBMR.050601.
Article
CAS
PubMed
Google Scholar
Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12:632–44. https://doi.org/10.1038/nrrheum.2016.148.
Article
PubMed
Google Scholar
Burr DB, Gallant M a. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8:665–73. https://doi.org/10.1038/nrrheum.2012.130.
Article
CAS
PubMed
Google Scholar
Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, Christiansen C, Henriksen K. Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun. 2008;366:483–8. https://doi.org/10.1016/j.bbrc.2007.11.168.
Article
CAS
PubMed
Google Scholar
Henriksen K, Karsdal MA, Martin TJ. Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int. 2014;94:88–97. https://doi.org/10.1007/s00223-013-9741-7.
Article
CAS
PubMed
Google Scholar
Henriksen K, Andreassen KV, Thudium CS, Gudmann KNS, Moscatelli I, Crüger-Hansen CE, et al. A specific subtype of osteoclasts secretes factors inducing nodule formation by osteoblasts. Bone. 2012;51:353–61. https://doi.org/10.1016/j.bone.2012.06.007.
Article
CAS
PubMed
Google Scholar
Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 2011;7:43–9. https://doi.org/10.1038/nrrheum.2010.197.
Article
CAS
PubMed
Google Scholar
Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthr Cartil. 2008;16:638–46. https://doi.org/10.1016/j.joca.2008.01.014.
Article
CAS
PubMed
Google Scholar
Väänänen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci. 2000;113:377–81. http://jcs.biologists.org/content/113/3/377.
PubMed
Google Scholar
Durand M, Komarova SV, Bhargava A, Trebec-Reynolds DP, Li K, Fiorino C, et al. Monocytes from patients with osteoarthritis display increased osteoclastogenesis and bone resorption: the In Vitro Osteoclast Differentiation in Arthritis study. Arthritis Rheum. 2013;65:148–58. https://doi.org/10.1002/art.37722.
Article
CAS
PubMed
Google Scholar
Knowles HJ, Moskovsky L, Thompson MS, Grunhen J, Cheng X, Kashima TG, et al. Chondroclasts are mature osteoclasts which are capable of cartilage matrix resorption. Virchows Arch. 2012;461:205–10. https://doi.org/10.1007/s00428-012-1274-3.
Article
CAS
PubMed
Google Scholar
Bertuglia A, Lacourt M, Girard C, Beauchamp G, Richard H, Laverty S. Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthr Cartil. 2016;24:555–66. https://doi.org/10.1016/j.joca.2015.10.008.
Article
CAS
PubMed
Google Scholar
Kuttapitiya A, Assi L, Laing K, Hing C, Mitchell P, Whitley G, et al. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann Rheum Dis. 2017; https://doi.org/10.1136/annrheumdis-2017-211396..
Roemer FW, Guermazi A, Javaid MK, Lynch JA, Niu J, Zhang Y, et al. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis. 2009;68:1461–5. https://doi.org/10.1136/ard.2008.096834.
Article
CAS
PubMed
Google Scholar
Shibakawa A, Yudoh K, Masuko-Hongo K, Kato T, Nishioka K, Nakamura H. The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow. Osteoarthr Cartil. 2005;13:679–87. https://doi.org/10.1016/j.joca.2005.04.010.
Article
CAS
PubMed
Google Scholar
Rody WJ, Krokhin O, Spicer V, Chamberlain CA, Chamberlain M, McHugh KP, et al. The use of cell culture platforms to identify novel markers of bone and dentin resorption. Orthod Craniofac Res. 2017;20(Suppl 1):89–94. https://doi.org/10.1111/ocr.12162.
Article
PubMed
Google Scholar
Sondergaard BC, Henriksen K, Wulf H, Oestergaard S, Schurigt U, Bräuer R, et al. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthr Cartil. 2006;14:738–48. https://doi.org/10.1016/j.joca.2006.01.016.
Article
CAS
PubMed
Google Scholar
Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99:1534–45..
Article
CAS
PubMed Central
PubMed
Google Scholar
Dejica VM, Mort JS, Laverty S, Antoniou J, Zukor DJ, Tanzer M, et al. Increased type II collagen cleavage by cathepsin K and collagenase activities with aging and osteoarthritis in human articular cartilage. Arthritis Res Ther. 2012;14:R113. https://doi.org/10.1186/ar3839.
Article
CAS
PubMed Central
PubMed
Google Scholar
Xue M, McKelvey K, Shen K, Minhas N, March L, Park S-Y, et al. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology. 2014;53:2270–9. https://doi.org/10.1093/rheumatology/keu254.
Article
CAS
PubMed
Google Scholar
Kaspiris A, Khaldi L, Chronopoulos E, Vasiliadis E, Grivas TB, Kouvaras I, et al. Macrophage-specific metalloelastase (MMP-12) immunoexpression in the osteochondral unit in osteoarthritis correlates with BMI and disease severity. Pathophysiology. 2015;22:143–51. https://doi.org/10.1016/j.pathophys.2015.06.001.
Article
CAS
PubMed
Google Scholar
Sanchez C, Bay-Jensen A-C, Pap T, Dvir-Ginzberg M, Quasnichka H, Barrett-Jolley R, et al. Chondrocyte secretome: a source of novel insights and exploratory biomarkers of osteoarthritis. Osteoarthr Cartil. 2017;25:1199–209. https://doi.org/10.1016/j.joca.2017.02.797.
Article
CAS
PubMed
Google Scholar
Konttinen YT, Mandelin J, Li T-F, Salo J, Lassus J, Liljeström M, et al. Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum. 2002;46:953–60. https://doi.org/10.1002/art.10185.
Article
CAS
PubMed
Google Scholar
Simkin PA. Consider the tidemark. J Rheumatol. 2012;39:890–2. https://doi.org/10.3899/jrheum.110942.
Article
PubMed
Google Scholar
Sørensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, et al. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab. 2007;25:36–45. https://doi.org/10.1007/s00774-006-0725-9.
Article
PubMed
Google Scholar
Henriksen K, Karsdal MA, Taylor A, Tosh D, Coxon FP. Generation of human osteoclasts from peripheral blood. Methods Mol Biol. 2012;816:159–75. https://doi.org/10.1007/978-1-61779-415-5_11.
Article
CAS
PubMed
Google Scholar
Neutzsky-Wulff AV, Sørensen MG, Kocijancic D, Leeming DJ, Dziegiel MH, Karsdal MA, et al. Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption - implications for osteoclast quality. BMC Musculoskelet Disord. 2010;11:109. https://doi.org/10.1186/1471-2474-11-109.
Article
PubMed Central
PubMed
Google Scholar
Bay-Jensen A-C, Liu Q, Byrjalsen I, Li Y, Wang J, Pedersen C, et al. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM—increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem. 2011;44:423–9. https://doi.org/10.1016/j.clinbiochem.2011.01.001.
Article
CAS
PubMed
Google Scholar
Sørensen MG, Henriksen K, Neutzsky-Wulff AV, Dziegiel MH, Karsdal MA. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J Bone Miner Res. 2007;22:1640–8. https://doi.org/10.1359/jbmr.070613.
Article
PubMed
Google Scholar
Karsdal MA, Sumer EU, Wulf H, Madsen SH, Christiansen C, Fosang AJ, et al. Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation. Arthritis Rheum. 2007;56:1549–58. https://doi.org/10.1002/art.22599.
Article
CAS
PubMed
Google Scholar
Karsdal MA, Bay-Jensen AC, Lories RJ, Abramson S, Spector T, Pastoureau P, et al. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis. 2014;73:336–48. https://doi.org/10.1136/annrheumdis-2013-204111.
Article
CAS
PubMed
Google Scholar
Karsdal MA, Henriksen K, Sørensen MG, Gram J, Schaller S, Dziegiel MH, et al. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol. 2005;166:467–76. https://doi.org/10.1016/S0002-9440(10)62269-9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lorget F, Kamel S, Mentaverri R, Wattel A, Naassila M, Maamer M, et al. High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun. 2000;268:899–903. https://doi.org/10.1006/bbrc.2000.2229.
Article
CAS
PubMed
Google Scholar
Siebuhr AS, Petersen KK, Arendt-Nielsen L, Egsgaard LL, Eskehave T, Christiansen C, et al. Identification and characterisation of osteoarthritis patients with inflammation derived tissue turnover. Osteoarthr Cartil. 2014;22:44–50. https://doi.org/10.1016/j.joca.2013.10.020.
Article
CAS
PubMed
Google Scholar
Maijer KI, Gudmann NS, Karsdal MA, Gerlag DM, Tak PP, Bay-Jensen AC. Neo-epitopes—fragments of cartilage and connective tissue degradation in early rheumatoid arthritis and unclassified arthritis. PLoS One. 2016;11:e0149329. https://doi.org/10.1371/journal.pone.0149329.
Article
PubMed Central
PubMed
Google Scholar
Bay-Jensen AC, Platt A, Byrjalsen I, Vergnoud P, Christiansen C, Karsdal MA. Effect of tocilizumab combined with methotrexate on circulating biomarkers of synovium, cartilage, and bone in the LITHE study. Semin Arthritis Rheum. 2014;43:470–8. https://doi.org/10.1016/j.semarthrit.2013.07.008.
Article
CAS
PubMed
Google Scholar
Bay-Jensen AC, Platt A, Siebuhr AS, Christiansen C, Byrjalsen I, Karsdal MA. Early changes in blood-based joint tissue destruction biomarkers are predictive of response to tocilizumab in the LITHE study. Arthritis Res Ther. 2016;18:13. https://doi.org/10.1186/s13075-015-0913-x.
Article
PubMed Central
PubMed
Google Scholar
Bay-Jensen AC, Leeming DJ, Kleyer A, Veidal SS, Schett G, Karsdal MA. Ankylosing spondylitis is characterized by an increased turnover of several different metalloproteinase-derived collagen species: A cross-sectional study. Rheumatol Int. 2012;32:3565–72..
Article
CAS
PubMed
Google Scholar
Bay-Jensen AC, Wichuk S, Byrjalsen I, Leeming DJ, Morency N, Christiansen C, et al. Circulating protein fragments of cartilage and connective tissue degradation are diagnostic and prognostic markers of rheumatoid arthritis and ankylosing spondylitis. PLoS One. 2013;8:e54504. https://doi.org/10.1371/journal.pone.0054504.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lecaille F, Choe Y, Brandt W, Li Z, Craik CS, Brömme D. Selective inhibition of the collagenolytic activity of human cathepsin K by altering its S2 subsite specificity. Biochemistry. 2002;41:8447–54. https://doi.org/10.1021/bi025638x.
Article
CAS
PubMed
Google Scholar
Touaitahuata H, Cres G, de Rossi S, Vives V, Blangy A. The mineral dissolution function of osteoclasts is dispensable for hypertrophic cartilage degradation during long bone development and growth. Dev Biol. 2014;393:57–70. https://doi.org/10.1016/j.ydbio.2014.06.020.
Article
CAS
PubMed
Google Scholar
Andersen TL, del Carmen OM, Kirkegaard T, Lenhard T, Foged NT, Delaissé J-M. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells. Bone. 2004;35:1107–19. https://doi.org/10.1016/j.bone.2004.06.019.
Article
CAS
PubMed
Google Scholar
He Y, Zheng Q, Jiang M, Sun S, Christiansen TG, Kassem M, et al. The effect of protease inhibitors on the induction of osteoarthritis-related biomarkers in bovine full-depth cartilage explants. PLoS One. 2015;10:e0122700. https://doi.org/10.1371/journal.pone.0122700.
Article
PubMed Central
PubMed
Google Scholar
Verma P, Dalal K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem. 2011;112:3507–14. https://doi.org/10.1002/jcb.23298.
Article
CAS
PubMed
Google Scholar
Henriksen K, Bollerslev J, Everts V, Karsdal MA. Osteoclast activity and subtypes as a function of physiology and pathology—implications for future treatments of osteoporosis. Endocr Rev. 2011;32:31–63. https://doi.org/10.1210/er.2010-0006.
Article
CAS
PubMed
Google Scholar
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov. 2016;11:457–72. https://doi.org/10.1517/17460441.2016.1160884.
Article
PubMed
Google Scholar
James IE, Marquis RW, Blake SM, Hwang SM, Gress CJ, Ru Y, et al. Potent and selective cathepsin L inhibitors do not inhibit human osteoclast resorption in vitro. J Biol Chem. 2001;276:11507–11. https://doi.org/10.1074/jbc.M010684200.
Article
CAS
PubMed
Google Scholar
Kakegawa H, Nikawa T, Tagami K, Kamioka H, Sumitani K, Kawata T, et al. Participation of cathepsin L on bone resorption. FEBS Lett. 1993;321:247–50. https://doi.org/10.1016/0014-5793(93)80118-E.
Article
CAS
PubMed
Google Scholar