Felson DT. Relation of obesity and of vocational and avocational risk factors to osteoarthritis. J Rheumatol. 2005;32:1133–5. http://www.ncbi.nlm.nih.gov/pubmed/15977343.
PubMed
Google Scholar
Runhaar J, Koes BW, Clockaerts S, Bierma-Zeinstra SM. A systematic review on changed biomechanics of lower extremities in obese individuals: a possible role in development of osteoarthritis. Obes Rev. 2011;12:1071–82. https://doi.org/10.1111/j.1467-789X.2011.00916.x.
Article
CAS
PubMed
Google Scholar
Felson DT. Weight and osteoarthritis. J Rheumatol Suppl. 1995;43:7–9. http://www.ncbi.nlm.nih.gov/pubmed/7752143.
CAS
PubMed
Google Scholar
Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, Koch G, et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 2008;59:1207–13. https://doi.org/10.1002/art.24021.
Article
PubMed
PubMed Central
Google Scholar
Powell A, Teichtahl AJ, Wluka AE, Cicuttini FM. Obesity: a preventable risk factor for large joint osteoarthritis which may act through biomechanical factors. Br J Sports Med. 2005;39:4–5. https://doi.org/10.1136/bjsm.2004.011841.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felson DT. Does excess weight cause osteoarthritis and, if so, why? Ann Rheum Dis. 1996;55:668–70. http://www.ncbi.nlm.nih.gov/pubmed/8882146.
Article
CAS
Google Scholar
Griffin TM, Guilak F. Why is obesity associated with osteoarthritis? Insights from mouse models of obesity. Biorheology. 2008;45:387–98. http://www.ncbi.nlm.nih.gov/pubmed/18836239.
PubMed
PubMed Central
Google Scholar
Aspden RM. Obesity punches above its weight in osteoarthritis. Nat Rev Rheumatol. 2011;7:65–8. https://doi.org/10.1038/nrrheum.2010.123.
Article
PubMed
Google Scholar
Grotle M, Hagen KB, Natvig B, Dahl FA, Kvien TK. Obesity and osteoarthritis in knee, hip and/or hand: an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet Disord. 2008;9:132. https://doi.org/10.1186/1471-2474-9-132.
Article
PubMed
PubMed Central
Google Scholar
Oliveria SA, Felson DT, Cirillo PA, Reed JI, Walker AM. Body weight, body mass index, and incident symptomatic osteoarthritis of the hand, hip, and knee. Epidemiology. 1999;10:161–6. https://www.ncbi.nlm.nih.gov/pubmed/10069252.
Article
CAS
Google Scholar
Hurwitz D, Sumner D, Andriacchi T, Sugar D. Dynamic knee loads during gait predict proximal tibial bone distribution. J Biomech. 1998;31:423–30.
Article
CAS
Google Scholar
Landry SC, McKean KA, Hubley-Kozey CL, Stanish WD, Deluzio KJ. Knee biomechanics of moderate OA patients measured during gait at a self-selected and fast walking speed. J Biomech. 2007;40:1754–61. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17084845.
Article
Google Scholar
Fregly BJ, D’Lima DD, Colwell CW Jr. Effective gait patterns for offloading the medial compartment of the knee. J Orthop Res. 2009;27:1016–21. https://doi.org/10.1002/jor.20843.
Article
PubMed
PubMed Central
Google Scholar
Cher WL, Utturkar GM, Spritzer CE, Nunley JA, DeFrate LE, Collins AT. An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity. J Biomech. 2016;49:3026–30. https://doi.org/10.1016/j.jbiomech.2016.05.030.
Article
PubMed
PubMed Central
Google Scholar
Lad NK, Liu B, Ganapathy PK, Utturkar GM, Sutter EG, Moorman CT 3rd, et al. Effect of normal gait on in vivo tibiofemoral cartilage strains. J Biomech. 2016;49:2870–6. https://doi.org/10.1016/j.jbiomech.2016.06.025.
Article
PubMed
PubMed Central
Google Scholar
Liu B, Lad NK, Collins AT, Ganapathy PK, Utturkar GM, McNulty AL, et al. In vivo tibial cartilage strains in regions of cartilage-to-cartilage contact and cartilage-to-meniscus contact in response to walking. Am J Sports Med. 2017;45:2817–23. https://doi.org/10.1177/0363546517712506.
Article
PubMed
PubMed Central
Google Scholar
Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, et al. In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis. 2005;64:291–5. https://doi.org/10.1136/ard.2004.022400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Widmyer MR, Utturkar GM, Leddy HA, Coleman JL, Spritzer CE, Moorman CT 3rd, et al. High body mass index is associated with increased diurnal strains in the articular cartilage of the knee. Arthritis Rheum. 2013;65:2615–22. https://doi.org/10.1002/art.38062.
Article
PubMed
PubMed Central
Google Scholar
Coleman JL, Widmyer MR, Leddy HA, Utturkar GM, Spritzer CE, Moorman CT 3rd, et al. Diurnal variations in articular cartilage thickness and strain in the human knee. J Biomech. 2013;46:541–7. https://doi.org/10.1016/j.jbiomech.2012.09.013.
Article
PubMed
Google Scholar
Tsushima H, Okazaki K, Takayama Y, Hatakenaka M, Honda H, Izawa T, et al. Evaluation of cartilage degradation in arthritis using T1rho magnetic resonance imaging mapping. Rheumatol Int. 2012;32:2867–75. https://doi.org/10.1007/s00296-011-2140-3.
Article
CAS
PubMed
Google Scholar
Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007;15:789–97. https://doi.org/10.1016/j.joca.2007.01.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keenan KE, Besier TF, Pauly JM, Han E, Rosenberg J, Smith RL, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthritis Cartilage. 2011;19:171–9. https://doi.org/10.1016/j.joca.2010.11.009.
Article
CAS
PubMed
Google Scholar
Li X, Pai A, Blumenkrantz G, Carballido-Gamio J, Link T, Ma B, et al. Spatial distribution and relationship of T1rho and T2 relaxation times in knee cartilage with osteoarthritis. Magn Reson Med. 2009;61:1310–8. https://doi.org/10.1002/mrm.21877.
Article
PubMed
PubMed Central
Google Scholar
Souza RB, Kumar D, Calixto N, Singh J, Schooler J, Subburaj K, et al. Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthritis Cartilage. 2014;22:1367–76. https://doi.org/10.1016/j.joca.2014.04.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor KA, Cutcliffe HC, Queen RM, Utturkar GM, Spritzer CE, Garrett WE, et al. In vivo measurement of ACL length and relative strain during walking. J Biomech. 2013;46:478–83. https://doi.org/10.1016/j.jbiomech.2012.10.031.
Article
CAS
PubMed
Google Scholar
Alexander RM, Jayes AS. A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J Zool. 1983;201:135–52 <Go to ISI>://WOS:A1983RH79100010.
Article
Google Scholar
von Hurst PR, Walsh DCI, Conlon CA, Ingram M, Kruger R, Stonehouse W. Validity and reliability of bioelectrical impedance analysis to estimate body fat percentage against air displacement plethysmography and dual-energy X-ray absorptiometry. Nutr Diet. 2016;73:197–204. https://doi.org/10.1111/1747-0080.12172.
Article
Google Scholar
Okafor EC, Utturkar GM, Widmyer MR, Abebe ES, Collins AT, Taylor DC, et al. The effects of femoral graft placement on cartilage thickness after anterior cruciate ligament reconstruction. J Biomech. 2014;47:96–101. https://doi.org/10.1016/j.jbiomech.2013.10.003.
Article
PubMed
Google Scholar
Van de Velde SK, Bingham JT, Hosseini A, Kozanek M, DeFrate LE, Gill TJ, et al. Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum. 2009;60:3693–702. https://doi.org/10.1002/art.24965.
Article
PubMed
PubMed Central
Google Scholar
Borthakur A, Wheaton A, Charagundla SR, Shapiro EM, Regatte RR, Akella SV, et al. Three-dimensional T1rho-weighted MRI at 1.5 Tesla. Journal of magnetic resonance imaging. JMRI. 2003;17:730–6. https://doi.org/10.1002/jmri.10296.
Article
PubMed
Google Scholar
Hatcher CC, Collins AT, Kim SY, Michel LC, Mostertz WC 3rd, Ziemian SN, et al. Relationship between T1rho magnetic resonance imaging, synovial fluid biomarkers, and the biochemical and biomechanical properties of cartilage. J Biomech. 2017;55:18–26. https://doi.org/10.1016/j.jbiomech.2017.02.001.
Article
PubMed
PubMed Central
Google Scholar
Wheaton AJ, Dodge GR, Borthakur A, Kneeland JB, Schumacher HR, Reddy R. Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res. 2004;23:102–8. https://doi.org/10.1016/j.orthres.2004.06.015.
Article
CAS
Google Scholar
DeVita P, Hortobagyi T. Obesity is not associated with increased knee joint torque and power during level walking. J Biomech. 2003;36:1355–62. https://www.ncbi.nlm.nih.gov/pubmed/12893044.
Article
Google Scholar
Harding GT, Dunbar MJ, Hubley-Kozey CL, Stanish WD, Astephen Wilson JL. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis. Clin Biomech (Bristol, Avon). 2016;31:79–86. https://doi.org/10.1016/j.clinbiomech.2015.09.017.
Article
Google Scholar
DeVita P, Rider P, Hortobagyi T. Reductions in knee joint forces with weight loss are attenuated by gait adaptations in class III obesity. Gait Posture. 2016;45:25–30. https://doi.org/10.1016/j.gaitpost.2015.12.040.
Article
PubMed
Google Scholar
Liukkonen MK, Mononen ME, Vartiainen P, Kaukinen P, Bragge T, Suomalainen JS, et al. Evaluation of the effect of bariatric surgery-induced weight loss on knee gait and cartilage degeneration. J Biomech Eng. 2018;140(4). https://doi.org/10.1115/1.4038330.
Article
Google Scholar
Anandacoomarasamy A, Leibman S, Smith G, Caterson I, Giuffre B, Fransen M, et al. Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis. 2012;71:26–32. https://doi.org/10.1136/ard.2010.144725.
Article
CAS
PubMed
Google Scholar
Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage. 1999;7:2–14. https://doi.org/10.1053/joca.1998.0170.
Article
CAS
PubMed
Google Scholar
Griffin TM, Fermor B, Huebner JL, Kraus VB, Rodriguiz RM, Wetsel WC, et al. Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res Ther. 2010;12:R130. https://doi.org/10.1186/ar3068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular cartilage bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16:451. https://doi.org/10.1007/s11926-014-0451-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coleman MC, Ramakrishnan PS, Brouillette MJ, Martin JA. Injurious loading of articular cartilage compromises chondrocyte respiratory function. Arthritis Rheumatol. 2016;68:662–71. https://doi.org/10.1002/art.39460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A. 2014;111:E5114–22. https://doi.org/10.1073/pnas.1414298111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohanraj B, Meloni GR, Mauck RL, Dodge GR. A high-throughput model of post-traumatic osteoarthritis using engineered cartilage tissue analogs. Osteoarthritis Cartilage. 2014;22:1282–90. https://doi.org/10.1016/j.joca.2014.06.032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honda K, Ohno S, Tanimoto K, Ijuin C, Tanaka N, Doi T, et al. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol. 2000;79:601–9. https://doi.org/10.1078/0171-9335-00089.
Article
CAS
PubMed
Google Scholar
Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol. 2011;25:815–23. https://doi.org/10.1016/j.berh.2011.11.013.
Article
PubMed
PubMed Central
Google Scholar
Carman WJ, Sowers M, Hawthorne VM, Weissfeld LA. Obesity as a risk factor for osteoarthritis of the hand and wrist: a prospective study. Am J Epidemiol. 1994;139:119–29. https://www.ncbi.nlm.nih.gov/pubmed/8296779.
Article
CAS
Google Scholar
Aygun AD, Gungor S, Ustundag B, Gurgoze MK, Sen Y. Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediat Inflamm. 2005;2005:180–3. https://doi.org/10.1155/MI.2005.180.
Article
CAS
Google Scholar
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9. https://doi.org/10.1172/JCI25102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Messier SP, Mihalko SL, Legault C, Miller GD, Nicklas BJ, DeVita P, et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA. 2013;310:1263–73. https://doi.org/10.1001/jama.2013.277669.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huebner JL, Landerman LR, Somers TJ, Keefe FJ, Guilak F, Blumenthal JA, et al. Exploratory secondary analyses of a cognitive-behavioral intervention for knee osteoarthritis demonstrate reduction in biomarkers of adipocyte inflammation. Osteoarthritis Cartilage. 2016;24:1528–34. https://doi.org/10.1016/j.joca.2016.04.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNulty AL, Miller MR, O’Connor SK, Guilak F. The effects of adipokines on cartilage and meniscus catabolism. Connect Tissue Res. 2011;52:523–33. https://doi.org/10.3109/03008207.2011.597902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui W, Litherland GJ, Elias MS, Kitson GI, Cawston TE, Rowan AD, et al. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann Rheum Dis. 2012;71:455–62. https://doi.org/10.1136/annrheumdis-2011-200372.
Article
CAS
PubMed
Google Scholar
Eckstein F, Tieschky M, Faber S, Englmeier KH, Reiser M. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat Embryol. 1999;200:419–24. http://www.ncbi.nlm.nih.gov/pubmed/10460479.
Article
CAS
Google Scholar