Dixon WG, Symmons DP, Lunt M, Watson KD, Hyrich KL. British Society for Rheumatology Biologics Register Control Centre C, et al. Serious infection following anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis: lessons from interpreting data from observational studies. Arthritis Rheum. 2007;56(9):2896–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hetland ML, Christensen IJ, Tarp U, Dreyer L, Hansen A, Hansen IT, et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum. 2010;62(1):22–32.
Article
CAS
PubMed
Google Scholar
Coates LC, Cawkwell LS, Ng NW, Bennett AN, Bryer DJ, Fraser AD, et al. Real life experience confirms sustained response to long-term biologics and switching in ankylosing spondylitis. Rheumatology (Oxford). 2008;47(6):897–900.
Article
CAS
Google Scholar
Lee JW, Kang JH, Yim YR, Kim JE, Wen L, Lee KE, et al. Predictors of Switching Anti-Tumor Necrosis Factor Therapy in Patients with Ankylosing Spondylitis. PLoS One. 2015;10(7):e0131864.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moreno M, Gratacos J, Torrente-Segarra V, Sanmarti R, Morla R, Pontes C, et al. Withdrawal of infliximab therapy in ankylosing spondylitis in persistent clinical remission, results from the REMINEA study. Arthritis Res Ther. 2019;21(1):88.
Article
PubMed
PubMed Central
Google Scholar
Aletaha D, Kapral T, Smolen JS. Toxicity profiles of traditional disease modifying antirheumatic drugs for rheumatoid arthritis. Ann Rheum Dis. 2003;62(5):482–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antoni C, Braun J. Side effects of anti-TNF therapy: current knowledge. Clin Exp Rheumatol. 2002;20(6 Suppl 28):S152–7.
CAS
PubMed
Google Scholar
de la Torre I, Valor L, Nieto JC, Hernandez-Florez D, Martinez L, Gonzalez CM, et al. Anti-TNF treatments in rheumatoid arthritis: economic impact of dosage modification. Expert Rev Pharmacoecon Outcomes Res. 2013;13(3):407–14.
Article
PubMed
Google Scholar
Kim Y, Kim G-T, Suh YS, Kim H-O, Lee H-N, Lee S-G. The Impact of the Amendment of the Korean National Health Insurance Reimbursement Criteria for Anti-tumor Necrosis Factor-α Agents on Treatment Pattern, Clinical Response and Persistence in Patients With Rheumatoid Arthritis. J Rheum Dis. 2020;27(3):159–67.
Article
Google Scholar
Glintborg B, Ostergaard M, Krogh NS, Tarp U, Manilo N, Loft AG, et al. Clinical response, drug survival and predictors thereof in 432 ankylosing spondylitis patients after switching tumour necrosis factor alpha inhibitor therapy: results from the Danish nationwide DANBIO registry. Ann Rheum Dis. 2013;72(7):1149–55.
Article
CAS
PubMed
Google Scholar
Katchamart W, Johnson S, Lin HJ, Phumethum V, Salliot C, Bombardier C. Predictors for remission in rheumatoid arthritis patients: A systematic review. Arthritis Care Res. 2010;62(8):1128–43.
Article
Google Scholar
Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine Learning Outperforms ACC / AHA CVD Risk Calculator in MESA. J Am Heart Assoc. 2018;7(22):e009476.
Article
PubMed
PubMed Central
Google Scholar
Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: toward clinical applications. Curr Opin Neurobiol. 2019;55:152–9.
Article
CAS
PubMed
Google Scholar
Shung DL, Au B, Taylor RA, Tay JK, Laursen SB, Stanley AJ, et al. Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding. Gastroenterology. 2020;158(1):160–7.
Article
PubMed
Google Scholar
Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care. 2010;48(6 Suppl):S106–13.
Article
PubMed
Google Scholar
Guan Y, Zhang H, Quang D, Wang Z, Parker SCJ, Pappas DA, et al. Machine Learning to Predict Anti-Tumor Necrosis Factor Drug Responses of Rheumatoid Arthritis Patients by Integrating Clinical and Genetic Markers. Arthritis Rheum. 2019;71(12):1987–96.
Article
CAS
Google Scholar
Lee S, Eun Y, Kim H, Cha HS, Koh EM, Lee J. Machine learning to predict early TNF inhibitor users in patients with ankylosing spondylitis. Sci Rep. 2020;10(1):20299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi IA. Comparison of the Disease Activity Score-28 Based on the Erythrocyte Sedimentation Rate and C-reactive Protein in Rheumatoid Arthritis. J Rheuma Dis. 2017;24(5):287–92.
Article
Google Scholar
Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, et al. American College of Rheumatology. Preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum. 1995;38(6):727–35.
Article
CAS
PubMed
Google Scholar
Anderson JJ, Baron G, van der Heijde D, Felson DT, Dougados M. Ankylosing spondylitis assessment group preliminary definition of short-term improvement in ankylosing spondylitis. Arthritis Rheum. 2001;44(8):1876–86.
Article
CAS
PubMed
Google Scholar
Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, et al. Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis. N Engl J Med. 2015;373(26):2534–48.
Article
CAS
PubMed
Google Scholar
Burmester GR, Kremer JM, Van den Bosch F, Kivitz A, Bessette L, Li Y, et al. Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391(10139):2503–12.
Article
CAS
PubMed
Google Scholar
Taylor PC, Keystone EC, van der Heijde D, Weinblatt ME, Del Carmen ML, Reyes Gonzaga J, et al. Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis. N Engl J Med. 2017;376(7):652–62.
Article
CAS
PubMed
Google Scholar
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Article
Google Scholar
Chen T, Guestrin C. Xgboost: A scalable tree boosting system. 2016. https://arxiv.org/abs/1603.02754. .
Book
Google Scholar
Jain AK, Mao JC, Mohiuddin KM. Artificial neural networks: a tutorial. Computer. 1996;29(3):31.
Article
Google Scholar
Kim JH. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput Stat Data Anal. 2009;53(11):3735–45.
Article
Google Scholar
Raschka S. Model evaluation, model selection, and algorithm selection in machine learning. 2018. https://arxiv.org/abs/1811.12808. .
Google Scholar
Shrikumar A, Greenside P, Kundaje A. Learning Important Features Through Propagating Activation Differences. 2017. https://arxiv.org/abs/1704.02685. Accessed 1 April 2021.
Yousefi S, Amrollahi F, Amgad M, Dong C, Lewis JE, Song C, et al. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci Rep. 2017;7(1):11707.
Article
PubMed
PubMed Central
CAS
Google Scholar
R Core Team. R: A language and environment for statistical computing. 2013.
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: A system for large-scale machine learning. 2016. https://arxiv.org/abs/1605.08695. Accessed 1 April 2021.
Tao W, Concepcion AN, Vianen M, Marijnissen ACA, Lafeber F, Radstake T, et al. Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis. Arthritis Rheum. 2021;73(2):212–22.
Article
CAS
Google Scholar
Han T, Jiang D, Zhao Q, Wang L, Yin K. Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Trans Inst Meas Control. 2017;40(8):2681–93.
Article
Google Scholar
Brown MA. Breakthroughs in genetic studies of ankylosing spondylitis. Rheumatology (Oxford). 2008;47(2):132–7.
Article
CAS
Google Scholar
Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL, et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997;40(10):1823–8.
Article
CAS
PubMed
Google Scholar
Morin M, Hellgren K, Frisell T. Familial aggregation and heritability of ankylosing spondylitis - a Swedish nested case-control study. Rheumatology (Oxford). 2020;59(7):1695–702.
Article
Google Scholar
Pedersen O, Svendsen A, Ejstrup L, Skytthe A, Harris J, Junker P. Heritability estimates on ankylosing spondylitis. Clin Exp Rheumatol. 2006;24(4):463.
Google Scholar
Frisell T, Holmqvist M, Kallberg H, Klareskog L, Alfredsson L, Askling J. Familial risks and heritability of rheumatoid arthritis: role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 2013;65(11):2773–82.
Article
CAS
PubMed
Google Scholar
Karami J, Aslani S, Jamshidi A, Garshasbi M, Mahmoudi M. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene. 2019;702:8–16.
Article
CAS
PubMed
Google Scholar
Seitz M, Wirthmuller U, Moller B, Villiger PM. The -308 tumour necrosis factor-alpha gene polymorphism predicts therapeutic response to TNFalpha-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology (Oxford). 2007;46(1):93–6.
Article
CAS
Google Scholar
Tong Q, Zhao DB, Bajracharya P, Xu X, Kong RN, Zhang J, et al. TNF-alpha -857 and -1031 polymorphisms predict good therapeutic response to TNF-alpha blockers in Chinese Han patients with ankylosing spondylitis. Pharmacogenomics. 2012;13(13):1459–67.
Article
CAS
PubMed
Google Scholar
Harrison SR, Burska AN, Emery P, Marzo-Ortega H, Ponchel F. Interferon-related gene expression in response to TNF inhibitor treatment in ankylosing spondylitis patients: a pilot study. Rheumatology (Oxford). 2021;60(8):3607–16.
Wang XB, Ellis JJ, Pennisi DJ, Song X, Batra J, Hollis K, et al. Transcriptome analysis of ankylosing spondylitis patients before and after TNF-alpha inhibitor therapy reveals the pathways affected. Genes Immun. 2017;18(3):184–90.
Article
CAS
PubMed
Google Scholar
Curtis JR, Churchill M, Kivitz A, Samad A, Gauer L, Gervitz L, et al. A Randomized Trial Comparing Disease Activity Measures for the Assessment and Prediction of Response in Rheumatoid Arthritis Patients Initiating Certolizumab Pegol. Arthritis Rheum. 2015;67(12):3104–12.
Article
CAS
Google Scholar
Vastesaeger N, van der Heijde D, Inman RD, Wang Y, Deodhar A, Hsu B, et al. Predicting the outcome of ankylosing spondylitis therapy. Ann Rheum Dis. 2011;70(6):973–81.
Article
PubMed
Google Scholar