- Oral presentation
- Open access
- Published:
Fcγ receptor targeting in RA
Arthritis Research & Therapy volume 14, Article number: O17 (2012)
The activation threshold of cells in the immune system is often tuned by cell surface molecules. Among these, Fc receptors expressed on various hematopoietic cells constitute critical elements for activating or down-modulating immune responses.
IgGFc receptors (FcγRs) were originally identified as B cell surface molecules. For more than 40 years, FcγRs have continued to attract the interest of many basic researchers and clinicians due to their intriguing IgG binding ability, which provides a critical link between the humoral and cellular branches of the immune system.
Several activating-type FcγRs, which associate with homodimeric Fc receptor common γ subunits, are crucial for the onset and exacerbation of inflammatory diseases. In contrast, a unique inhibitory FcγR, FcγRIIB, plays a critical role in keeping immune cells silent. Murine models for allergic responses and autoimmune diseases including RA illustrate the indispensable roles of activating-type FcγRs and the inhibitory FcγRIIB in the initiation and suppression of inflammation, respectively [1–5].
The ultimate goals of FcγR research are to accomplish our understanding of this molecular family and to delineate novel therapeutic strategies toward the conquest of allergic and autoimmune diseases, infectious diseases, immunodeficiency, transplantation-associated immune disorders, and malignant tumors. Although many lines of evidence indicate that a part of the intravenous Ig (IVIg)-mediated anti-inflammatory effects can be attributable to the blocking of activating-type FcγRs, recent studies have pointed out an indispensable role of FcγRIIB in therapeutic benefits of IVIg in several murine models of inflammatory diseases including RA [6]. In this session, we will give a brief summary of recent knowledge on antibody biomedicine including IVIgto you, in light of exploiting FcγRs as potential therapeutic targets for various inflammatory diseases, along with the comparison withnon-FcγR-mediated mechanisms of IVIg.
References
Nakamura A, Kubo T, Takai T: Fc receptor targeting in the treatment of allergy, autoimmune diseases and cancer. Adv Exp Med Biol. 2008, 640: 220-233. 10.1007/978-0-387-09789-3_17.
Nakamura A, Nukiwa T, Takai T: Deregulation of peripheral B-cell development in enhanced severity of collagen-induced arthritis in FcgammaRIIB-deficient mice. J Autoimmun. 2003, 20: 227-236. 10.1016/S0896-8411(03)00034-9.
Takai T: Roles of Fc receptors in autoimmunity. Nat Rev Immunol. 2002, 2: 580-592.
Yuasa T, Kubo S, Yoshino T, Ujike A, Matsumura K, Ono M, Ravetch JV, Takai T: Deletion of Fcγ receptor IIB renders H-2b mice susceptible to collagen-induced arthritis. J Exp Med. 1999, 189: 187-194. 10.1084/jem.189.1.187.
Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV: Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature. 1996, 379: 346-349. 10.1038/379346a0.
Anthony RM, Kobayashi T, Wermeling F, Ravetch JV: Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature. 2011, 475: 110-113. 10.1038/nature10134.
Author information
Authors and Affiliations
Rights and permissions
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Takai, T., Nakamura, A., Tobinai, A. et al. Fcγ receptor targeting in RA. Arthritis Res Ther 14 (Suppl 1), O17 (2012). https://doi.org/10.1186/ar3572
Published:
DOI: https://doi.org/10.1186/ar3572