Skip to main content

Association of microRNA-221/222 and -323-3p with rheumatoid arthritis via predictions using the human TNF transgenic mouse model

Background

MicroRNAs (miRs), a class of small non-coding RNA molecules, act as posttranscriptional regulators and are involved in a plethora of cellular functions. miRs have attracted a great deal of attention as potential therapeutic targets, as the sequence-specific mode in which they act, allows the simultaneous targeting of multiple target genes, often members of the same biological pathway(s) [1]. Previous studies have demonstrated that miRs are dysregulated and functionally involved in rheumatoid arthritis (RA) [29]. In this study we sought to identify novel miR associations in synovial fibroblasts (SFs), a key pathogenic cell type in RA [10, 11], by performing miR expression profiling on cells isolated from the human TNF transgenic mouse model (TghuTNF, Tg197) [12] and patients biopsies.

Materials and methods

miR expression in SFs from TghuTNF and WT control mice were determined by deep sequencing and the arthritic profile was established by pairwise comparisons. qRT-PCR analysis was utilised for profile validation, miR and gene quantitation in patient SFs. Dysregulated miR target genes and pathways were predicted via bioinformatic algorithms.

Results

Deep sequencing demonstrated that TghuTNF-SFs exhibit a distinct pathogenic profile with 22 significantly upregulated and 30 significantly downregulated miRs (fold change>1.5, p-value<0.05). qRT-PCR validation assays confirmed the dysregulation of miR-223, miR-146a and miR-155 previously associated with human RA pathology, as well as that of miR-221/222 and miR-323-3p. Notably, the latter were also found significantly upregulated in patient RASFs, suggesting their association with human RA pathology. Bioinformatic analysis suggested Wnt/Cadherin signaling as the most significant pathway targets of miR-221/222 and miR-323-3p and CSNK1A1 and BTRC, the negative regulators of β-catenin, amongst predicted gene targets. qRT-PCR assays confirmed the downregulation of these genes in RASFs, validating our hypothesis that the newly identified miRs may function to modulate Wnt/Cadherin signaling.

Conclusions

In this study, by performing comparative analyses between an established mouse model of arthritis and RA patient biopsies, we identified novel dysregulated miRs in RASFs potentially involved in pathways important for the pathogenic phenotype of these cells and highlighting the value of such cross-species comparative approaches [13].

References

  1. 1.

    Montgomery RL, van Rooij E: microRNA Regulation as a Therapeutic Strategy for Cardiovascular Disease. Curr Drug Targets. 2010, 11 (8): 936-942. 10.2174/138945010791591368.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H, Nakamura T: Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2010, 12 (3): R86-10.1186/ar3013.

    PubMed Central  Article  PubMed  Google Scholar 

  3. 3.

    Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK: Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008, 10 (4): R101-

    PubMed Central  Article  PubMed  Google Scholar 

  4. 4.

    Kawano S, Nakamachi Y: miR-124a as a key regulator of proliferation and MCP-1 secretion in synoviocytes from patients with rheumatoid arthritis. Ann Rheum Dis. 2011, 70: I88-I91. 10.1136/ard.2010.138669.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Stanczyk J, Ospelt C, Karouzakis E, Filer A, Raza K, Kolling C, Gay R, Buckley CD, Tak PP, Gay S, et al: Altered expression of MicroRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 2011, 63 (2): 373-381. 10.1002/art.30115.

    PubMed Central  Article  PubMed  Google Scholar 

  6. 6.

    Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D: Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008, 58 (4): 1001-1009. 10.1002/art.23386.

    Article  PubMed  Google Scholar 

  7. 7.

    Bluml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S, Koenders MI, van den Berg WB, Smolen J, Redlich K: Essential role for micro-RNA 155 in the pathogenesis of autoimmune arthritis. Arthritis Rheum. 2011, 63 (5): 1281-8. 10.1002/art.30281.

    Article  PubMed  Google Scholar 

  8. 8.

    Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, et al: MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA. 2011, 108 (27): 11193-8. 10.1073/pnas.1019536108.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. 9.

    Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M: The inhibitory effect of microRNA-146 expression on bone destruction in arthritis. Arthritis Rheum. 2011, 63 (6): 1582-90. 10.1002/art.30321.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Armaka M, Apostolaki M, Jacques P, Kontoyiannis DL, Elewaut D, Kollias G: Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J Exp Med. 2008, 205 (2): 331-337. 10.1084/jem.20070906.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lefevre S, Knedla A, Tennie C, Kampmann A, Wunrau C, Dinser R, Korb A, Schnaker E-M, Tarner IH, Robbins PD, et al: Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med. 2009, 15 (12): 1414-1420. 10.1038/nm.2050.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. 12.

    Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G: Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991, 10 (13): 4025-4031.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. 13.

    Kollias G, Papadaki P, Apparailly F, Vervoordeldonk MJ, Holmdahl R, Baumans V, Desaintes C, Di Santo J, Distler J, Garside P, et al: Animal models for arthritis: innovative tools for prevention and treatment. Ann Rheum Dis. 2011, 70 (8): 1357-1362. 10.1136/ard.2010.148551.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the Masterswitch Project (HEALTH-F2-2008-223404), EURO-RA RTN (HPRN-CT-2002-00255) and IMI BtCure (grant agreement No 115142) grants to GK and SG. JR was supported by the Wellcome Trust grant 075491/Z/04. In SG also received funding from IAR-EPALINGES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ioannis Pandis.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Cite this article

Pandis, I., Ospelt, C., Karagianni, N. et al. Association of microRNA-221/222 and -323-3p with rheumatoid arthritis via predictions using the human TNF transgenic mouse model. Arthritis Res Ther 14, P59 (2012). https://doi.org/10.1186/ar3660

Download citation

Keywords

  • Rheumatoid Arthritis
  • Rheumatoid Arthritis Patient
  • Deep Sequencing
  • Synovial Fibroblast
  • Predict Gene Target