Tschopp J. Mitochondria: sovereign of inflammation? Eur J Immunol. 2011;41(5):1196–202.
Article
PubMed
CAS
Google Scholar
Yu EP, Bennett MR. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab. 2014;25(9):481–7.
Article
PubMed
CAS
Google Scholar
Wen H, Ting JP, O'Neill LA. A role for the NLRP3 inflammasome in metabolic diseases–did Warburg miss inflammation? Nat Immunol. 2012;13(4):352–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kristal BS, Vigneau-Callahan KE, Moskowitz AJ, Matson WR. Purine catabolism: links to mitochondrial respiration and antioxidant defenses? Arch Biochem Biophys. 1999;370(1):22–33.
Article
PubMed
CAS
Google Scholar
Matsuo H, Yamamoto K, Nakaoka H, Nakayama A, Sakiyama M, Chiba T, et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis. 2016;75(4):652–9.
Article
PubMed
CAS
Google Scholar
Jeppesen TD, Schwartz M, Frederiksen AL, Wibrand F, Olsen DB, Vissing J. Muscle phenotype and mutation load in 51 persons with the 3243A>G mitochondrial DNA mutation. Arch Neurol. 2006;63(12):1701–6.
Article
PubMed
Google Scholar
Flaquer A, Rospleszcz S, Reischl E, Zeilinger S, Prokisch H, Meitinger T, et al. Mitochondrial GWA analysis of lipid profile identifies genetic variants to be associated with HDL cholesterol and triglyceride levels. PLoS One. 2015;10(5):e0126294.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williams SL, Mash DC, Züchner S, Moraes CT. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet. 2013;9(12):e1003990.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen CH, Yang JH, Chiang CW, Hsiung CN, Wu PE, Chang LC, et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan biobank project. Hum Mol Genet. 2016;25(14):5321–31.
PubMed
CAS
PubMed Central
Google Scholar
Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and nutrition examination survey 2007-2008. Arthritis Rheum. 2011;63(11):3136–41.
Article
PubMed
Google Scholar
McAdams MA, Maynard JW, Baer AN, Köttgen A, Clipp S, Coresh J, et al. Reliability and sensitivity of the self-report of physician-diagnosed gout in the campaign against cancer and heart disease and the atherosclerosis risk in the community cohorts. J Rheumatol. 2011;38(1):135–41.
Article
PubMed
Google Scholar
consortium EK, Project EPG. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol. 2017;16(2):135–43.
Article
CAS
Google Scholar
Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89(1):82–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kloss-Brandstätter A, Schäfer G, Erhart G, Hüttenhofer A, Coassin S, Seifarth C, et al. Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet. 2010;87(6):802–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17(1):122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics. 2005;21(14):3176–8.
Article
PubMed
CAS
Google Scholar
Jiang P, Liang M, Zhang C, Zhao X, He Q, Cui L, et al. Biochemical evidence for a mitochondrial genetic modifier in the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet. 2016;25(16):3613–25.
Article
PubMed
CAS
Google Scholar
Ingman M, Gyllensten U. mtDB: human mitochondrial genome database, a resource for population genetics and medical sciences. Nucleic Acids Res. 2006;34(Database issue):D749–51.
Article
PubMed
CAS
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pütz J, Dupuis B, Sissler M, Florentz C. Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. RNA. 2007;13(8):1184–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998;26(1):148–53.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Araujo LF, Fonseca AS, Muys BR, Plaça JR, Bueno RB, Lorenzi JC, et al. Mitochondrial genome instability in colorectal adenoma and adenocarcinoma. Tumour Biol. 2015;36(11):8869–79.
Article
PubMed
CAS
Google Scholar
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johns DR, Neufeld MJ. Cytochrome c oxidase mutations in Leber hereditary optic neuropathy. Biochem Biophys Res Commun. 1993;196(2):810–5.
Article
PubMed
CAS
Google Scholar
Liu S, Bai Y, Huang J, Zhao H, Zhang X, Hu S, et al. Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab. 2013;109(1):100–6.
Article
PubMed
CAS
Google Scholar
Manfredi G, Schon EA, Moraes CT, Bonilla E, Berry GT, Sladky JT, et al. A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord. 1995;5(5):391–8.
Article
PubMed
CAS
Google Scholar
Choi BO, Hwang JH, Kim J, Cho EM, Cho SY, Hwang SJ, et al. A MELAS syndrome family harboring two mutations in mitochondrial genome. Exp Mol Med. 2008;40(3):354–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abu-Amero KK, Bosley TM, Bohlega S, Hansen E. Mitochondrial T9957C mutation in association with NAION and seizures but not MELAS. Ophthalmic Genet. 2005;26(1):31–6.
Article
PubMed
CAS
Google Scholar
McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, et al. De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann Neurol. 2004;55(1):58–64.
Article
PubMed
CAS
Google Scholar
D'Aurelio M, Pallotti F, Barrientos A, Gajewski CD, Kwong JQ, Bruno C, et al. In vivo regulation of oxidative phosphorylation in cells harboring a stop-codon mutation in mitochondrial DNA-encoded cytochrome c oxidase subunit I. J Biol Chem. 2001;276(50):46925–32.
Article
PubMed
CAS
Google Scholar
Cardaioli E, Da Pozzo P, Malfatti E, Gallus GN, Rubegni A, Malandrini A, et al. Chronic progressive external ophthalmoplegia: a new heteroplasmic tRNA(Leu(CUN)) mutation of mitochondrial DNA. J Neurol Sci. 2008;272(1–2):106–9.
Article
PubMed
CAS
Google Scholar
Ruiz-Pesini E, Wallace DC. Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Hum Mutat. 2006;27(11):1072–81.
Article
PubMed
CAS
Google Scholar
Kelley SO, Steinberg SV, Schimmel P. Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility. Nat Struct Biol. 2000;7(10):862–5.
Article
PubMed
CAS
Google Scholar
Helm M, Brulé H, Friede D, Giegé R, Pütz D, Florentz C. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA. 2000;6(10):1356–79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Han D, Dai P, Zhu Q, Liu X, Huang D, Yuan Y, et al. The mitochondrial tRNA(ala) T5628C variant may have a modifying role in the phenotypic manifestation of the 12S rRNA C1494T mutation in a large Chinese family with hearing loss. Biochem Biophys Res Commun. 2007;357(2):554–60.
Article
PubMed
CAS
Google Scholar
Liu Y, Li Y, Wang X, Ma Q, Zhu C, Li Z, et al. Mitochondrial tRNA mutations in Chinese hypertensive individuals. Mitochondrion. 2016;28:1–7.
Article
PubMed
CAS
Google Scholar
Spagnolo M, Tomelleri G, Vattemi G, Filosto M, Rizzuto N, Tonin P. A new mutation in the mitochondrial tRNA(ala) gene in a patient with ophthalmoplegia and dysphagia. Neuromuscul Disord. 2001;11(5):481–4.
Article
PubMed
CAS
Google Scholar
Wani AA, Ahanger SH, Bapat SA, Rangrez AY, Hingankar N, Suresh CG, et al. Analysis of mitochondrial DNA sequences in childhood encephalomyopathies reveals new disease-associated variants. PLoS One. 2007;2(9):e942.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feigenbaum A, Bai RK, Doherty ES, Kwon H, Tan D, Sloane A, et al. Novel mitochondrial DNA mutations associated with myopathy, cardiomyopathy, renal failure, and deafness. Am J Med Genet A. 2006;140((20):2216–22.
Article
CAS
Google Scholar
Santorelli FM, Siciliano G, Casali C, Basirico MG, Carrozzo R, Calvosa F, et al. Mitochondrial tRNA(Cys) gene mutation (A5814G): a second family with mitochondrial encephalopathy. Neuromuscul Disord. 1997;7(3):156–9.
Article
PubMed
CAS
Google Scholar
Yu JW, Lee MS. Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res. 2016;39(11):1503–18.
Article
PubMed
CAS
Google Scholar
Strange DA, Fessel WJ. Benign symmetric lipomatosis. JAMA. 1968;204(4):339–40.
Article
Google Scholar
Greene ML, Glueck CJ, Fujimoto WY, Seegmiller JE. Benign symmetric lipomatosis (Launois-Bensaude adenolipomatosis) with gout and hyperlipoproteinemia. Am J Med. 1970;48(2):239–46.
Article
PubMed
CAS
Google Scholar
Enzi G, Busetto L, Ceschin E, Coin A, Digito M, Pigozzo S. Multiple symmetric lipomatosis: clinical aspects and outcome in a long-term longitudinal study. Int J Obes Relat Metab Disord. 2002;26(2):253–61.
Article
PubMed
CAS
Google Scholar
Klopstock T, Naumann M, Schalke B, Bischof F, Seibel P, Kottlors M, et al. Multiple symmetric lipomatosis: abnormalities in complex IV and multiple deletions in mitochondrial DNA. Neurology. 1994;44(5):862–6.
Article
PubMed
CAS
Google Scholar
Nicholls P, Kim JK. Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Can J Biochem. 1982;60(6):613–23.
Article
PubMed
CAS
Google Scholar
Basic A, Alizadehgharib S, Dahlén G, Dahlgren U. Hydrogen sulfide exposure induces NLRP3 inflammasome-dependent IL-1β and IL-18 secretion in human mononuclear leukocytes in vitro. Clin Exp Dent Res. 2017;3(3):115–20.
Article
PubMed
PubMed Central
Google Scholar
Lenaz G, Baracca A, Carelli V, D'Aurelio M, Sgarbi G, Solaini G. Bioenergetics of mitochondrial diseases associated with mtDNA mutations. Biochim Biophys Acta. 2004;1658(1–2):89–94.
Article
PubMed
CAS
Google Scholar
Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352.
Article
PubMed
PubMed Central
Google Scholar
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.
Article
PubMed
CAS
Google Scholar
Jain SK, Micinski D, Lieblong BJ, Stapleton T. Relationship between hydrogen sulfide levels and HDL-cholesterol, adiponectin, and potassium levels in the blood of healthy subjects. Atherosclerosis. 2012;225(1):242–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang P, Wang M, Xue L, Xiao Y, Yu J, Wang H, et al. A hypertension-associated tRNAAla mutation alters tRNA metabolism and mitochondrial function. Mol Cell Biol. 2016;36(14):1920–30.
Article
PubMed
PubMed Central
Google Scholar
Jia Z, Wang X, Qin Y, Xue L, Jiang P, Meng Y, et al. Coronary heart disease is associated with a mutation in mitochondrial tRNA. Hum Mol Genet. 2013;22(20):4064–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trevisan G, Hoffmeister C, Rossato MF, Oliveira SM, Silva MA, Silva CR, et al. TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout. Free Radic Biol Med. 2014;72:200–9.
Article
PubMed
CAS
Google Scholar
Chang YP, Ka SM, Hsu WH, Chen A, Chao LK, Lin CC, et al. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J Cell Physiol. 2015;230(7):1567–79.
Article
PubMed
CAS
Google Scholar
Wang P, Ren D, Chen Y, Jiang M, Wang R, Wang YG. Effect of sodium alginate addition to resveratrol on acute gouty arthritis. Cell Physiol Biochem. 2015;36(1):201–7.
Article
PubMed
CAS
Google Scholar
Dalbeth N, Haskard DO. Mechanisms of inflammation in gout. Rheumatology (Oxford). 2005;44(9):1090–6.
Article
CAS
Google Scholar
Jhang JJ, Lu CC, Ho CY, Cheng YT, Yen GC. Protective effects of Catechin against monosodium urate-induced inflammation through the modulation of NLRP3 Inflammasome activation. J Agric Food Chem. 2015;63(33):7343–52.
Article
PubMed
CAS
Google Scholar
Stevnsner T, Thorslund T, de Souza-Pinto NC, Bohr VA. Mitochondrial repair of 8-oxoguanine and changes with aging. Exp Gerontol. 2002;37(10–11):1189–96.
Article
PubMed
CAS
Google Scholar
Arden C, Baltrusch S, Agius L. Glucokinase regulatory protein is associated with mitochondria in hepatocytes. FEBS Lett. 2006;580(8):2065–70.
Article
PubMed
CAS
Google Scholar
Lin YH, Chang HM, Chang FP, Shen CR, Liu CL, Mao WY, et al. Protoporphyrin IX accumulation disrupts mitochondrial dynamics and function in ABCG2-deficient hepatocytes. FEBS Lett. 2013;587(19):3202–9.
Article
PubMed
CAS
Google Scholar