Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388(10055):2039–52.
Article
PubMed
CAS
Google Scholar
Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45(2):145–54.
Article
PubMed
CAS
Google Scholar
Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration. urate excretion and gout Nature genetics. 2008;40(4):437–42.
Article
PubMed
CAS
Google Scholar
Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. P Natl Acad Sci USA. 2009;106(25):10338–42.
Article
Google Scholar
Merriman TR. An update on the genetic architecture of hyperuricemia and gout. Arthritis research & therapy. 2015;17:98.
Article
CAS
Google Scholar
Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 2004;350(11):1093–103.
Article
PubMed
CAS
Google Scholar
Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Alcohol intake and risk of incident gout in men: a prospective study. Lancet. 2004;363(9417):1277–81.
Article
PubMed
Google Scholar
Kela U, Vijayvargiya R, Trivedi CP. Inhibitory effects of methylxanthines on the activity of xanthine-oxidase. Life Sci. 1980;27(22):2109–19.
Article
PubMed
CAS
Google Scholar
Kiyohara C, Kono S, Honjo S, Todoroki I, Sakurai Y, Nishiwaki M, et al. Inverse association between coffee drinking and serum uric acid concentrations in middle-aged Japanese males. Brit. J Nutr. 1999;82(2):125–30.
CAS
Google Scholar
Choi HK, Curhan G. Coffee, tea, and caffeine consumption and serum uric acid level: the third National Health and nutrition examination survey. Arthrit Rheum-Arthr. 2007;57(5):816–21.
Article
CAS
Google Scholar
Zhang Y, Yang T, Zeng C, Wei J, Li H, Xiong YL, et al. Is coffee consumption associated with a lower risk of hyperuricaemia or gout? A systematic review and meta-analysis. BMJ Open. 2016;6(7):e009809.
Article
PubMed
PubMed Central
Google Scholar
Park KY, Kim HJ, Ahn HS, Kim SH, Park EJ, Yim SY, et al. Effects of coffee consumption on serum uric acid: systematic review and meta-analysis. Semin Arthritis Rheum. 2016;45(5):580–6.
Article
PubMed
CAS
Google Scholar
Choi HK, Willett W, Curhan G. Coffee consumption and risk of incident gout in men—a prospective study. Arthritis Rheum. 2007;56(6):2049–55.
Article
PubMed
CAS
Google Scholar
Choi HK, Curhan G. Coffee consumption and risk of incident gout in women: the Nurses’ health study. Am J Clin Nutr. 2010;92(4):922–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salazar-Martinez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ, et al. Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med. 2004;140(1):1–8.
Article
PubMed
Google Scholar
Greer F, Hudson R, Ross R, Graham T. Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans. Diabetes. 2001;50(10):2349–54.
Article
PubMed
CAS
Google Scholar
Keijzers GB, De Galan BE, Tack CJ, Smits P. Caffeine can decrease insulin sensitivity in humans. Diabetes Care. 2002;25(2):364–9.
Article
PubMed
CAS
Google Scholar
Thong FSL, Graham TE. Caffeine-induced impairment of glucose tolerance is abolished by beta-adrenergic receptor blockade in humans. J Appl Physiol. 2002;92(6):2347–52.
Article
PubMed
CAS
Google Scholar
van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes—a systematic review. J Am Med Assoc. 2005;294(1):97–104.
Article
CAS
Google Scholar
Petrie HJ, Chown SE, Belfie LM, Duncan AM, McLaren DH, Conquer JA, et al. Caffeine ingestion increases the insulin response to an oral-glucose-tolerance test in obese men before and after weight loss. Am J Clin Nutr. 2004;80(1):22–8.
Article
PubMed
CAS
Google Scholar
Wu TY, Hankinson SE, Willett WC, Giovannucci E. Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in US women. Diabetes Care. 2005;28(6):1390–6.
Article
PubMed
CAS
Google Scholar
Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, Paynter N, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry. 2015;20(5):647–56.
Article
PubMed
CAS
Google Scholar
Ollier W, Sprosen T, Peakman T. UK biobank: from concept to reality. Pharmacogenomics. 2005;6(6):639–46.
Article
PubMed
Google Scholar
Collins R. UK biobank: protocol for a large-scale prospective epidemiological resource. In: Manchester: UK biobank coordinating Centre; 2007.
Google Scholar
Cadzow M, Merriman TR, Dalbeth N. Performance of gout definitions for genetic epidemiological studies: analysis of UK biobank. Arthritis Res Ther. 2017;19(1):181.
Article
PubMed
PubMed Central
Google Scholar
Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
Article
CAS
Google Scholar
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
UK Biobank touch-screen questionnaire: final version. UK: Biobank Coordinating Centre; 2006. Available from: http://www.ukbiobank.ac.uk/wp-content/uploads/2011/06/Touch_screen_questionnaire.pdf.
Perera V, Gross AS, McLachlan AJ. Measurement of CYP1A2 activity: a focus on caffeine as a probe. Curr Drug Metab. 2012;13(5):667–78.
Article
PubMed
CAS
Google Scholar
Thorn CF, Aklillu E, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for CYP1A2. Pharmacogenet Genomics. 2012;22(1):73–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet. 2016;25(24):5472–82.
PubMed
CAS
Google Scholar
Clarke TK AM, Davies G, Howard DM, Hall, LS, Padmanabhan S, Murray A, Smith B, Campbell A, Hayward C, Porteous D, Deary IJ, McIntosh AM. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK biobank (N=112,117). 2017.
Google Scholar
Rasheed H, Stamp LK, Dalbeth N, Merriman TR. Interaction of the GCKR and A1CF loci with alcohol consumption to influence the risk of gout. Arthritis Res Ther. 2017;19(1):161.
Article
PubMed
PubMed Central
Google Scholar
Larsson SC, Carlstrom M. Coffee consumption and gout: a Mendelian randomisation study. Ann Rheum Dis. 2018. https://doi.org/10.1136/annrheumdis-2018-213055. [Epub ahead of print].
Robinson PC, Choi HK, Do R, Merriman TR. Insight into rheumatological cause and effect through the use of Mendelian randomization. Nat Rev Rheumatol. 2017;13(3):193.
Article
PubMed
Google Scholar
Galante J, Adamska L, Young A, Young H, Littlejohns TJ, Gallacher J, et al. The acceptability of repeat internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK biobank. Br J Nutr. 2016;115(4):681–6.
Article
PubMed
CAS
Google Scholar