Fox RI. Sjögren’s syndrome. Lancet. 2005;366(9482):321–31. https://doi.org/10.1016/S0140-6736(05)66990-5.
Article
CAS
PubMed
Google Scholar
Moerman RV, Bootsma H, Kroese FG, Vissink A. Sjögren’s syndrome in older patients: aetiology, diagnosis and management. Drug Aging. 2013;30(3):137–53. https://doi.org/10.1007/s40266-013-0050-7.
Article
CAS
Google Scholar
Nguyen CQ, Peck AB. Unraveling the pathophysiology of Sjögren syndrome-associated dry eye disease. Ocul Surf. 2009;7(1):11–27. https://doi.org/10.1016/S1542-0124(12)70289-6.
Article
PubMed
PubMed Central
Google Scholar
Voigt, Alexandria et al. “Beyond the Glands: An in-Depth Perspective of Neurological Manifestations in Sjögren's Syndrome.” Rheumatology (Sunnyvale, Calif.) vol. 2014;2014: S4-010. doi:https://doi.org/10.4172/2161-1149.S4-010.
Fox RI, Stern M. Sjögren’s syndrome: mechanisms of pathogenesis involve interaction of immune and neurosecretory systems. Scand J Rheumatol Supp. 2002;116:3–13.
Google Scholar
Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J Autoimmun. 2010;34(4):400–7. https://doi.org/10.1016/j.jaut.2009.10.004.
Article
CAS
PubMed
Google Scholar
Hu Y, Nakagawa Y, Purushotham KR, Humphreys-Beher MG. Functional changes in salivary glands of autoimmune disease-prone NOD mice. Am J Physiol Endocrinol Metab. 1992;263(4):E607–E14. https://doi.org/10.1152/ajpendo.1992.263.4.E607.
Article
CAS
Google Scholar
Humphreys-Beher MG. Animal models for autoimmune disease-associated xerostomia and xerophthalmia. Dent Res J. 1996;10:73–5.
CAS
Google Scholar
Ridgway WM, Peterson LB, Todd JA, Rainbow DB, Healy B, Burren OS, et al. Chapter 6 gene–gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol. 2008:151–75. https://doi.org/10.1016/S0065-2776(08)00806-7.
Cha S, Nagashima H, Brown VB, Peck AB, Humphreys-Beher MG. Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjögren’s syndrome) on a healthy murine background. Arthritis Rheum. 2002;46(5):1390–8. https://doi.org/10.1002/art.10258.
Article
CAS
PubMed
Google Scholar
Nguyen CQ, Hu MH, Li Y, Stewart C, Peck AB. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjögren’s syndrome: findings in humans and mice. Arthritis Rheum. 2008;58(3):734–43. https://doi.org/10.1002/art.23214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voigt A, Bohn K, Sukumaran S, Stewart CM, Bhattacharya I, Nguyen CQ. Unique glandular ex-vivo Th1 and Th17 receptor motifs in Sjögren’s syndrome patients using single-cell analysis. J. Clin. Immunol. 2018;192:67.
Google Scholar
Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356(6367):314–7. https://doi.org/10.1038/356314a0.
Article
CAS
PubMed
Google Scholar
Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978;148(5):1198–215. https://doi.org/10.1084/jem.148.5.1198.
Article
CAS
PubMed
Google Scholar
Hang L, Theofilopoulos AN, Dixon FJ. A spontaneous rheumatoid arthritis-like disease in MRL/l mice. J Exp Med. 1982;155(6):1690–701. https://doi.org/10.1084/jem.155.6.1690.
Article
CAS
PubMed
Google Scholar
Jonsson R, Tarkowski A, Bäckman K, Holmdahl R, Klareskog L. Sialadenitis in the MRL-l mouse: morphological and immunohistochemical characterization of resident and infiltrating cells. Immunology. 1987;60(4):611–6.
CAS
PubMed
PubMed Central
Google Scholar
Wahren M, Skarstein K, Blange I, Pettersson I, Jonsson R. MRL/lpr mice produce anti-Ro 52,000 MW antibodies: detection, analysis of specificity and site of production. Immunology. 1994;83(1):9–15.
CAS
PubMed
PubMed Central
Google Scholar
Park Y-S, Gauna AE, Cha S. Mouse models of primary Sjogren’s syndrome. Curr Pharm Des. 2015;21(18):2350–64. https://doi.org/10.2174/1381612821666150316120024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voigt A, Esfandiary L, Nguyen CQ. Sexual dimorphism in an animal model of Sjögren’s syndrome: a potential role for Th17 cells. Biol Open. 2015;4(11):1410–9. https://doi.org/10.1242/bio.013771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sjögren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol. 2008;181(4):2898–906. https://doi.org/10.4049/jimmunol.181.4.2898.
Article
CAS
PubMed
Google Scholar
Katsifis GE, Rekka S, Moutsopoulos NM, Pillemer S, Wahl SM. Systemic and local interleukin-17 and linked cytokines associated with Sjögren’s syndrome immunopathogenesis. Am J Path. 2009;175(3):1167–77. https://doi.org/10.2353/ajpath.2009.090319.
Article
CAS
PubMed
Google Scholar
Kyriakidis NC, Kapsogeorgou EK, Tzioufas AG. A comprehensive review of autoantibodies in primary Sjögren’s syndrome: clinical phenotypes and regulatory mechanisms. J Autoimmun. 2014;51:67–74. https://doi.org/10.1016/j.jaut.2013.11.001.
Article
CAS
PubMed
Google Scholar
Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko KH, Jiao Z, Chan VSF, Lau CS, Cao X, Lu L. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis. 2015;74(6):1302–10. https://doi.org/10.1136/annrheumdis-2013-204584.
Article
CAS
PubMed
Google Scholar
Wanchoo A, Voigt A, Sukumaran S, Stewart CM, Bhattacharya I, Nguyen CQ. Single-cell analysis reveals sexually dimorphic repertoires of interferon-γ and IL-17A producing T cells in salivary glands of Sjögren’s syndrome mice. Sci Rep. 2017;7(1):12512. https://doi.org/10.1038/s41598-017-12627-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen CQ, Yin H, Lee BH, Carcamo WC, Chiorini JA, Peck AB. Pathogenic effect of interleukin-17A in induction of Sjögren’s syndrome-like disease using adenovirus-mediated gene transfer. Arthritis Res Ther. 2010;12(6):R220. https://doi.org/10.1186/ar3207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mavragani CP, Nezos A, Moutsopoulos HM. New advances in the classification, pathogenesis and treatment of Sjögren’s syndrome. Curr Opin Rheumatol. 2013;25(5):623–9. https://doi.org/10.1097/BOR.0b013e328363eaa5.
Article
CAS
PubMed
Google Scholar
Ramos-Casals M, Brito-Zeron P, Siso-Almirall A, Bosch X, Tzioufas AG. Topical and systemic medications for the treatment of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2012;8(7):399–411. https://doi.org/10.1038/nrrheum.2012.53.
Article
CAS
PubMed
Google Scholar
Cornec D, Devauchelle-Pensec V, Tobon GJ, Pers JO, Jousse-Joulin S, Saraux A. B cells in Sjögren’s syndrome: from pathophysiology to diagnosis and treatment. J Autoimmun. 2012;39(3):161–7. https://doi.org/10.1016/j.jaut.2012.05.014.
Article
CAS
PubMed
Google Scholar
Meiners PM, Vissink A, Kallenberg CG, Kroese FG, Bootsma H. Treatment of primary Sjögren’s syndrome with anti-CD20 therapy (rituximab). A feasible approach or just a starting point? Expert. Opin. Biol. Ther. 2011;11:1381–94.
Article
CAS
Google Scholar
Perosa F, Prete M, Racanelli V, Dammacco F. CD20-depleting therapy in autoimmune diseases: from basic research to the clinic. J Intern Med. 2010;267(3):260–77. https://doi.org/10.1111/j.1365-2796.2009.02207.x.
Article
CAS
PubMed
Google Scholar
Lee BH, Carcamo WC, Chiorini JA, Peck AB, Nguyen CQ. Gene therapy using IL-27 ameliorates Sjögren’s syndrome-like autoimmune exocrinopathy. Arthritis Res. Ther. 2012;14:R172-R.
Article
Google Scholar
Ochoa-Repáraz J, Riccardi C, Rynda A, Jun S, Callis G, Pascual DW. Regulatory T cell vaccination without autoantigen protects against experimental autoimmune encephalomyelitis. J Immunol. 2007;178(3):1791–9. https://doi.org/10.4049/jimmunol.178.3.1791.
Article
PubMed
Google Scholar
Kochetkova I, Trunkle T, Callis G, Pascual DW. Vaccination without autoantigen protects against collagen II-induced arthritis via immune deviation and regulatory T cells. J Immunol. 2008;181(4):2741–52. https://doi.org/10.4049/jimmunol.181.4.2741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddaloni M, Kochetkova I, Jun S, Callis G, Thornburg T, Pascual DW. Milk-based nutraceutical for treating autoimmune arthritis via the stimulation of IL-10- and TGF-β-producing CD39+ regulatory T cells. PLoS One. 2015;10(1):e0117825. https://doi.org/10.1371/journal.pone.0117825.
Article
PubMed
PubMed Central
Google Scholar
Nelson AS, Maddaloni M, Abbott JR, Hoffman C, Akgul A, Ohland C, Gharaibeh RZ, Jobin C, Brusko TM, Pascual DW. Oral therapy with colonization factor antigen I prevents development of type 1 diabetes in non-obese diabetic mice. Sci Rep. 2020;10(1):6156. https://doi.org/10.1038/s41598-020-62881-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kochetkova I, Thornburg T, Callis G, Pascual DW. Segregated regulatory CD39+CD4+ T cell function: TGF-β-producing Foxp3− and IL-10-producing Foxp3+ cells are interdependent for protection against collagen-induced arthritis. J Immunol. 2011;187(9):4654–66. https://doi.org/10.4049/jimmunol.1100530.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kochetkova I, Thornburg T, Callis G, Holderness K, Maddaloni M, Pascual DW. Oral Escherichia coli colonization factor antigen I fimbriae ameliorate arthritis via IL-35, not IL-27. J Immunol. 2014;192(2):804–16. https://doi.org/10.4049/jimmunol.1302018.
Article
CAS
PubMed
Google Scholar
Yamashita M, Ukibe K, Matsubara Y, Hosoya T, Sakai F, Kon S, et al. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice. Front Microbiol. 2017;8:2596.
Article
Google Scholar
Schorpion A, Kolasinski SL. Can probiotic supplements improve outcomes in rheumatoid arthritis? Curr Rheumatol Rep. 2017;19(11):73. https://doi.org/10.1007/s11926-017-0696-y.
Article
CAS
PubMed
Google Scholar
Richards JL, Yap YA, McLeod KH, Mackay CR, Marino E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin. Transl. Immunol. 2016;5:e82.
Article
Google Scholar
Kandasamy S, Vlasova AN, Fischer D, Kumar A, Chattha KS, Rauf A, Shao L, Langel SN, Rajashekara G, Saif LJ. Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus strain GG on human rotavirus binding, infection, and B cell immunity. J Immunol. 2016;196(4):1780–9. https://doi.org/10.4049/jimmunol.1501705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonnenborn U. Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett. 2016;363(19). https://doi.org/10.1093/femsle/fnw212.
Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G. Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Appl Microbiol Biot. 2016;100(20):8693–9. https://doi.org/10.1007/s00253-016-7829-5.
Article
CAS
Google Scholar
Galen JE, Curtiss R 3rd. The delicate balance in genetically engineering live vaccines. Vaccine. 2014;32(35):4376–85. https://doi.org/10.1016/j.vaccine.2013.12.026.
Article
CAS
PubMed
Google Scholar
Kirmiz N, Robinson RC, Shah IM, Barile D, Mills DA. Milk glycans and their interaction with the infant-gut microbiota. Annu Rev Food Sci Technol. 2018;9(1):429–50. https://doi.org/10.1146/annurev-food-030216-030207.
Article
CAS
PubMed
PubMed Central
Google Scholar
More MI, Vandenplas Y. Saccharomyces boulardii CNCM I-745 improves intestinal enzyme function: a trophic effects review. Clin Med Insights Gastroenterol. 2018;11:1179552217752679.
Article
Google Scholar
Mansour NM, Abdelaziz SA. Oral immunization of mice with engineered Lactobacillus gasseri NM713 strain expressing Streptococcus pyogenes M6 antigen. Microbiol Immunol. 2016;60(8):527–32. https://doi.org/10.1111/1348-0421.12397.
Article
CAS
PubMed
Google Scholar
O'Flaherty S, Klaenhammer TR. Multivalent chromosomal expression of the Clostridium botulinum serotype a neurotoxin heavy-chain antigen and the Bacillus anthracis protective antigen in Lactobacillus acidophilus. Appl Environ Microbiol. 2016;82(20):6091–101. https://doi.org/10.1128/AEM.01533-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Li X, Liu H, Zhuang S, Yang J, Zhang F. Intranasal immunization with recombinant lactococci carrying human papillomavirus E7 protein and mouse interleukin-12 DNA induces E7-specific antitumor effects in C57BL/6 mice. Oncol Let. 2014;7(2):576–82. https://doi.org/10.3892/ol.2013.1743.
Article
Google Scholar
Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science (New York, NY). 2000;289:1352–5.
Article
CAS
Google Scholar
R. D. O. Carvalho, F. L. R. do Carmo, A. de Oliveira Junior, P. Langella, J. M. Chatel, L. G. Bermudez-Humaran et al. Use of wild type or recombinant lactic acid bacteria as an alternative treatment for gastrointestinal inflammatory diseases: a focus on inflammatory bowel diseases and mucositis. Front. Microbiol. 2017;8:800.
Del Carmen S, de Moreno de LeBlanc A, Martin R, Chain F, Langella P, Bermudez-Humaran LG, et al. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities. Appl Environ Microbiol. 2014;80(3):869–77. https://doi.org/10.1128/AEM.03296-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddaloni M, Kochetkova I, Hoffman C, Pascual DW. Delivery of IL-35 by Lactococcus lactis ameliorates collagen-induced arthritis in mice. Front Immunol. 2018;9:2691. https://doi.org/10.3389/fimmu.2018.02691.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oddone GM, Mills DA, Block DE. Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Jan 12. PMID: 19141301. Plasmid May 2009;61(3):151–8. doi: https://doi.org/10.1016/j.plasmid.2008.12.001.
Spandidos A, Wang X, Wang H, Seed B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucl. Acids Res. 2010;38:D792–9 Harvard University primer bank # 6755774c3.
Article
CAS
Google Scholar
Rabbi MF, et al. Reactivation of intestinal inflammation is suppressed by catestatin in a murine model of colitis via M1 macrophages and not the gut microbiota. Front. Immunol. 2017;8:985.
Article
Google Scholar
Yamauchi M, Moriyama M, Hayashida JN, Maehara T, Ishiguro N, Kubota K, Furukawa S, Ohta M, Sakamoto M, Tanaka A, Nakamura S. Myeloid dendritic cells stimulated by thymic stromal lymphopoietin promote Th2 immune responses and the pathogenesis of oral lichen planus. PLoS One. 2017;12(3):e0173017. https://doi.org/10.1371/journal.pone.0173017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang Y, et al. IL-33 promotes innate IFN-γ production and modulates dendritic cell response in LCMV-induced hepatitis in mice. Eur. J. Immunol. 2015;45:3052–63.
Article
CAS
Google Scholar
Sadeghi L, et al. The immunomodulatory effect of bone-marrow mesenchymal stem cells on expression of TLR3 and TLR9 in mice dendritic cells. Intern J Organ Transplant Med. 2017;8:35–42.
CAS
Google Scholar
Pascual DW, Hone DM, Hall S, van Ginkel FW, Yamamoto M, Walters N, Fujihashi K, Powell RJ, Wu S, Vancott JL, Kiyono H, McGhee JR. Expression of recombinant enterotoxigenic Escherichia coli colonization factor antigen I by Salmonella typhimurium elicits a biphasic T helper cell response. Infect Immun. 1999;67(12):6249–56. https://doi.org/10.1128/IAI.67.12.6249-6256.1999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li CR, Deiro MF, Godebu E, Bradley LM. IL-7 uniquely maintains Foxp3+ adaptive Treg cells that reverse diabetes in NOD mice via integrin-β7-dependent localization. J Autoimmun. 2011;37(3):217–27. https://doi.org/10.1016/j.jaut.2011.06.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin H, Nguyen CQ, Samuni Y, Uede T, Peck AB, Chiorini JA. Local delivery of AAV2-CTLA4IgG decreases sialadenitis and improves gland function in the C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren's syndrome. Arthritis Res. Ther. 2012;14:R40.
Article
CAS
Google Scholar
Fox RI, Robinson CA, Curd JG, Kozin F, Howell FV. Sjogren’s syndrome. Proposed criteria for classification. Arthritis Rheum. 1986;29(5):577–85. https://doi.org/10.1002/art.1780290501.
Article
CAS
PubMed
Google Scholar
Soliotis FC, Moutsopoulos HM. Sjögren’s syndrome. Autoimmunity. 2004;37(4):305–7. https://doi.org/10.1080/08916930410001708715.
Article
CAS
PubMed
Google Scholar
Mavragani CP, Moutsopoulos HM. Sjögren’s syndrome. Annu Rev Path. 2014;9(1):273–85. https://doi.org/10.1146/annurev-pathol-012513-104728.
Article
CAS
Google Scholar
Qi J, Li D, Shi G, Zhang X, Pan Y, Dou H, et al. Interleukin-12 exacerbates Sjogren’s syndrome through induction of myeloid-derived suppressor cells. Mol Med Rep. 2019;19:1131–8.
Google Scholar
Li X, Li X, Qian L, Wang G, Zhang H, Wang X, Chen K, Zhai Z, Li Q, Wang Y, Harris DC. T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjögren’s syndrome. J Rheumatol. 2007;34(12):2438–45.
PubMed
Google Scholar
Mariette X, Gottenberg JE. Pathogenesis of Sjögren’s syndrome and therapeutic consequences. Curr Opin Rheumatol. 2010;22(5):471–7. https://doi.org/10.1097/BOR.0b013e32833c36c5.
Article
CAS
PubMed
Google Scholar
Kallenberg CG, Vissink A, Kroese FG, Abdulahad WH, Bootsma H. What have we learned from clinical trials in primary Sjögren’s syndrome about pathogenesis? Arthritis Res Ther. 2011;13(1):205. https://doi.org/10.1186/ar3234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee GR. The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci. 2018;19(3):730. https://doi.org/10.3390/ijms19030730.
Article
CAS
PubMed Central
Google Scholar
Roescher N, Tak PP, Illei GG. Cytokines in Sjögren’s syndrome. Oral Dis. 2009;15(8):519–26. https://doi.org/10.1111/j.1601-0825.2009.01582.x.
Article
CAS
PubMed
PubMed Central
Google Scholar